Снижение сократимости миокарда. Глобальная систолическая функция левого желудочка сохранена. Оценка нарушений региональной сократимости левого желудочка

Ю.А. Васюк, М.В. Копелева, А.Б. Хадзегова.

Московский государственный медицинский стоматологический университет.
Кафедра клинической функциональной диагностики РПДО.
Москва, Россия.

Для неинвазивной оценки локальной сократимости миокарда левого желудочка (ЛЖ) наиболее часто используют эхокардиографию. Эта доступная и информативная методика имеет серьезный недостаток, связанный с необъективностью исследования. Стандартная ЭхоКГ позволяет оценивать локальную сократимость исследуемого сегмента левого желудочка только визуально в сравнении с сократимостью соседних зон; при этом на результат оценки в большой степени влияют опыт и квалификация исследователя . При интерпретации стресс-ЭхоКГ требуется производить оценку локальной сократимости миокарда в динамике на фоне нагрузки, что делает результаты пробы еще более субъективными. Отсутствие количественных диагностических критериев является основной причиной низкой меж- и внутриоператорской воспроизводимости результатов стресс-ЭхоКГ .

Тканевая (ТДГ) представляет собой ультразвуковую методику, которая дает возможность количественно оценивать локальную сократимость миокарда. Высокая информативность тканевой при выявлении диссинергии миокарда подтверждена в эксперименте с острым нарушением коронарного кровоснабжения . Результаты клинических исследований также показали, что тканевая допплерография позволяет выявлять зоны нарушенной локальной сократимости у больных острым инфарктом миокарда - ИМ и постинфарктным кардиосклерозом - ПИКС . Имеются данные об успешном применении тканевой допплерографии при стресс-ЭхоКГ с добутамином .

В настоящее время тканевая допплерография чрезвычайно редко используется в обычной диагностической практике, поскольку эта методика еще недостаточно изучена. В литературе приводится более десятка скоростных, линейных и временных параметров, рассчитываемых при тканевой допплерографии, однако четкие количественные критерии гипоакинезии отсутствуют. Недостаточно подробно описаны изменения тканевой допплерографии на фоне нагрузки у здоровых лиц и пациентов с недостаточностью коронарного кровоснабжения. Особую проблему представляет феномен постсистолического укорочения (ПСУ), которое регистрируется при проведении тканевой допплерографии в зонах ишемии и очагового кардиосклероза . Большинство авторов признают, что появление ПСУ сопутствует патологическим процессам, протекающим в миокарде, однако данные литературы о том, как следует его интерпретировать, в настоящее время противоречивы и неоднозначны.

Цель проведенного нами исследования состояла в изучении практических возможностей тканевой допплерографии при выявлении нарушений локальной сократимости у больных с различными формами ИБС. Была поставлена задача выявить изменения показателей тканевой допплерографии, которые характеризуют диссинергию миокарда левого желудочка, как постоянную (при постинфарктном кардиосклерозе), так и преходящую (при ишемии на фоне фармакологической нагрузки). При этом мы стремились к тому, чтобы разработать как можно более специфичные и простые в применении диагностические критерии на основе показателей тканевой допплерографии, которые могли бы в будущем увеличить объективность и воспроизводимость результатов ЭхоКГ и стресс-ЭхоКГ.

Материал и методы

В исследование был включен 71 пациент, в том числе 51 больной ИБС и 20 человек без сердечно-сосудистой патологии, проходивших обследование и лечение в госпитале Главмосстроя (МСЧ N47) с 2001 по 2004 г. Больные ИБС были разделены на 2 группы: в 1-ю группу был включен 31 больной с постинфарктным кардиосклерозом, во 2-ю - 20 больных со стабильной стенокардией напряжения без предшествующего инфаркта миокарда. Пациентам со стабильной стенокардией была проведена диагностическая стресс-ЭхоКГ с добутамином и атропином по стандартному протоколу для выявления зон с нарушенным коронарным кровоснабжением. У всех лиц контрольной группы также была выполнена стресс-ЭхоКГ с добутамином и атропином вплоть до достижения субмаксимальной ЧСС.

ЭхоКГ (стандартная и в режиме тканевой допплерографии) проводилась на ультразвуковой диагностической системе Vivid Five фирмы General Electric (США) секторным датчиком c частотой 3,75 МГц. Исследовалось движение продольных волокон миокарда в проекциях по длинной оси левого желудочка из верхушечного доступа. Тканевая допплерография проводилась в 4-, 3- и 2-камерной проекциях в каждом из 16 сегментов левого желудочка и в 4 точках митрального кольца: у основания заднеперегородочной, боковой, нижней и передней стенок левого желудочка. Оценивались следующие параметры.

  1. Пиковые миокардиальные скорости: Sm (см/с) - пиковая систолическая скорость; Em (см/с) - пиковая скорость раннего диастолического расслабления; Am (см/с) - пиковая скорость в фазу систолы предсердий.
  2. Временные интервалы: систолический (TRS; от вершины зубца R на ЭКГ до вершины пика Sm) и диастолический (TRE; от вершины зубца R на ЭКГ до вершины пика Em).
  3. Амплитуда систолического смещения миокарда (INT) 1 .
  4. Пиковая скорость и амплитуда систолической деформации: SR (strain rate) и ST (strain).

1 Смещение (пройденный путь) в течение сердечного цикла рассчитывалось как интеграл от скорости по времени. Амплитуда систолического смещения измерялась в момент закрытия аортального клапана.

Оценивались также показатели тканевой допплерографии, характеризующие феномен ПСУ.

  1. Амплитуда постсистолического пика скорости, регистрируемого в фазу изоволюмического расслабления (Sps). Вычислялось отношение скоростей Sps/Sm.
  2. Форма кривой движения миокарда в течение сердечного цикла. Формы кривых движения миокарда в зависимости от наличия ПСУ подразделялись на 3 типа: "норма", "ступень" и "седло".
  3. Постсистолическая деформация (STps).

Статистическая обработка данных проводилась c помощью пакета программ STATISTICA 5,0 (StatSoft Inc., США, 1999). При анализе материала для всех параметров тканевой допплерографии рассчитывали среднее, стандартное отклонение (SD), медиану (med), 25 и 75 процентили, минимальное и максимальное значения.

Абсолютный и процентный прирост параметров тканевой допплерографии во время нагрузки представлен в виде доверительных интервалов для среднего. Достоверность различий значений параметров тканевой допплерографии в группах оценивалась по критерию t-Стьюдента и по непараметрическим критериям.

Использование тканевой допплерографии при оценке нарушений локальной сократимости в покое

Для того, чтобы оценить возможности тканевой допплерографии при выявлении нарушений локальной сократимости в покое, мы сравнили показатели тканевой допплерографии больных с постинфарктным кардиосклерозом и здоровых лиц. Сегменты больных с постинфарктным кардиосклерозом были разделены на 3 подгруппы по результатам двухмерной ЭхоКГ: нормокинетичные (n=184), гипокинетичные (n=121) и акинетичные (n=104). Дискинетичные сегменты были исключены из анализа вследствие малого их числа (n=4).

В подгруппах сегментов с нарушенной локальной сократимостью при сопоставлении с контрольной группой было выявлено достоверное снижение миокардиальных скоростей как в систолу (Sm), так и в раннюю и позднюю диастолу (Em и Am). Наряду со снижением скоростей в этих зонах отмечалось уменьшение амплитуды систолического смещения (INT), а также скорости и амплитуды систолической деформации (SR и ST). В подгруппе сегментов, где отсутствовал систолический прирост (акинезия), значения скоростных и линейных показателей тканевой допплерографии были достоверно ниже, чем в подгруппе с умеренным снижением сократимости (гипокинезия). Следует отметить, что в подгруппе визуально интактных сегментов у больных с постинфарктным кардиосклерозом также было выявлено небольшое, но достоверное снижение указанных параметров тканевой допплерографии по сравнению с контрольной группой (рис.1).

Рис. 1.

Временные интервалы TRS и TRE в гипо- и акинетичных сегментах были достоверно увеличены по сравнению с сегментами контрольной группы (172±59 и 154±53 мс в сравнении со 144±50 мс, p

Следует принять во внимание, что миокардиальные скорости в неповрежденных сегментах левого желудочка у больных с постинфарктным кардиосклерозом могут уменьшаться при снижении общей сократительной способности левого желудочка . Для того, чтобы учесть этот фактор, из анализа были исключены пациенты с обширными рубцовыми изменениями и выраженным снижением глобальной сократимости левого желудочка (фракция выброса - ФВ - менее 50%) и затем было проведено повторное сравнение подгрупп. В подгруппе больных с постинфарктным кардиосклерозом и сохраненной ФВ (не менее 50%) по сравнению с контрольной группой значения пиковых скоростей, INT, SR и S по-прежнему были достоверно снижены, а временные интервалы увеличены. Описанные изменения показателей тканевой допплерографии были выявлены не только в гипоакинетичных, но и в визуально нормокинетичных сегментах больных с постинфарктным кардиосклерозом.

Различия между сегментами с умеренной (гипокинезия) и выраженной (акинезия) степенью нарушений сократимости по результатам тканевой допплерографии были небольшими. Эти подгруппы различались только по значениям Sm, Em и INT. При исключении из анализа пациентов с ФВ левого желудочка менее 50% различия между гипо- и акинетичными сегментами стали недостоверными (p>0,05). Это может объясняться эффектом "подтягивания", который приводит к ложному увеличению скоростных и линейных показателей в зонах гипоакинезии, граничащих с интактным миокардом. У больных с высокой ФВ и небольшим объемом пораженного миокарда "подтягивание " в большей степени влияет на движение постинфарктных зон левого желудочка.

При тканевой допплерографии митрального кольца (МК) в точках, расположенных у основания стенок левого желудочка, содержащих два и более сегментов со сниженной сократимостью, были выявлены все описанные выше признаки сократительной дисфункции миокарда: снижение миокардиальных скоростей и систолического смещения, увеличение временных интервалов TRS и TRE. У основания нормокинетичных стенок левого желудочка показатели Sm, Em, Am и INT были выше, чем при гипоакинезии, однако достоверно ниже, чем в контрольной группе. SR и S на уровне митрального кольца у больных с постинфарктным кардиосклерозом и в контрольной группе достоверно не различались (рис. 2).


Рис. 2.

ПСУ чаще встречалось в сегментах с нарушенной сократимостью, чем в контрольной группе. Постсистолический пик скорости Sps при гипо- и акинезии встречался в 3 раза и более чаще (58 и 69% соответственно против 18% сегментов; p<0,05), а его амплитуда превышала Sm почти в 10 раз чаще, чем в норме (22 и 23% соответственно против 3% сегментов; p<0,05). В подгруппах гипо- и акинетичных сегментов преобладали "ступенчатая" и "седловидная" формы кривой движения миокарда, в то время как "нормальная" форма встречалась почти в 2 раза реже, чем в контрольной группе (45 и 36% соответственно против 82%; p<0,05). Пик постсистолической деформации Sps в подгруппах с нарушенной локальной сократимостью отмечался в 15 раз и более чаще, чем в норме (38 и 39% соответственно против 2% сегментов; p<0,05). В нормокинетичных сегментах "нормальная" кривая движения встречалась в 53% случаев, что достоверно чаще, чем при гипоакинезии, однако в 1,5 раза реже, чем у здоровых лиц.

На рис. 3-5 приведены различные варианты ПСУ у больных с постинфарктным кардиосклерозом.

Рис. 3. Тканевая допплерография.


а) В норме.


б) У больного с регистрируется высокоамплитудный пик постсистолической скорости (Sps).

Рис. 4. Формы кривых движения миокарда в норме и у больных с постинфарктным кардиосклерозом.


а) В норме.


б) При постинфарктном кардиосклерозе.


в) При постинфарктном кардиосклерозе.

"Седловидная" и "ступенчатая" формы движения обусловлены наличием постсистолического смещения миокарда, превышающего по амплитуде максимальное систолическое смещение.

Рис. 5. Кривые деформации миокарда в норме и при постинфарктном кардиосклерозе.


а) В норме.


б) При постинфарктном кардиосклерозе. У больного регистрируется высокоамплитудный пик постсистолической деформации (STps).

Вертикальная линия (AV) на рис. 3-5 соответствует времени закрытия аортального клапана. На представленных графиках также отмечается наличие базально-верхушечного градиента (снижение пиковых миокардиальных скоростей, продольного систолического смещения и деформации от основания к верхушке левого желудочка).

Достоверных различий между гипо- и акинетичными сегментами по характеристикам ПСУ не было выявлено, хотя в подгруппе акинетичных сегментов ПСУ регистрировалось несколько чаще. В нормокинетичных сегментах у больных с постинфарктным кардиосклерозом пики Sps и STps определялись значительно чаще, чем в контрольной группе (53 и 30% в сравнении с 18 и 2% случаев соответственно; p<0,05). ПСУ также было выявлено в 68% точек митрального кольца, расположенных у основания стенок левого желудочка с нарушенной сократимостью.

По нашим данным, высокоамплитудный пик постсистолической скорости, смещения или деформации, зарегистрированный при тканевой допплерографии, является высокоспецифичным критерием нарушенной локальной сократимости, так как этот признак был выявлен в большинстве диссинергичных сегментов и только в 9% сегментов контрольной группы (см. таблицу). Согласно этому критерию, признаки сократительной дисфункции были выявлены также в 52% визуально нормокинетичных сегментов больных, перенесших инфаркт миокарда.

Таблица . Эффективность диагностического критерия с использованием характеристик ПСУ.

Условия критерия Sps
n
Sps/Sm >1
или
Sps/Sm n
Форма "систолического движения": "седло"
n
Всего Сегменты, удовлетворяющие условию, %
Диссинергия 89 30 25 232 62
Нормокинезия 79 22 10 204 54
Контроль 6 8 16 321 9

Примечание. n - количество сегментов, удовлетворяющих условию.

При скрининговых обследованиях для оценки движения стенки левого желудочка в целом можно применять тканевую на уровне митрального кольца. Так как параметры тканевой допплерографии митрального кольца зависят от состояния глобальной сократимости, этот метод следует применять у больных с ФВ левого желудочка не ниже 50%. На диссинергию исследуемой стенки указывает сниженная Sm (менее 5 см/с) в сочетании со сниженной амплитудой систолического смещения (менее 0,9 см). Этот признак был выявлен в 96% диссинергичных и 70% нормокинетичных стенок левого желудочка у больных с постинфарктным кардиосклерозом и сохраненной глобальной сократимостью и только в 26% стенок левого желудочка контрольной группы.

Использование тканевой допплерографии при выявлении зон с нарушенным коронарным кровоснабжением на фоне фармакологической нагрузки

Для изучения возможностей тканевой допплерографии при выявлении ишемии миокарда мы сравнили показатели тканевой допплерографии в группе больных со стабильной стенокардией и в контрольной группе при проведении стресс-ЭхоКГ с добутамином и атропином. Ни у одного пациента со стенокардией не было зон исходно нарушенной сократимости. Нагрузочная проба у всех больных со стенокардией была положительной; в 50% случаев причиной остановки пробы стала ишемическая динамика ЭКГ, в 50% - выявление зон диссинергии миокарда. Нарушения сердечного ритма были зарегистрированы у 4 больных со стабильной стенокардией. В контрольной группе нарушений сердечного ритма не было выявлено.

Динамика параметров сегментарной тканевой допплерографии на фоне стресс-ЭхоКГ в контрольной группе

Количество сегментов левого желудочка в контрольной группе, имеющих удовлетворительное качество визуализации, составило 313 в покое, 291 при использовании малых доз и 280 на пике стресс-ЭхоКГ.

По мере увеличения дозы добутамина в контрольной группе наблюдались два основных типа динамики показателей тканевой допплерографии. Первый тип - постоянный достоверный прирост абсолютных значений параметра на всех этапах нагрузки. Такая динамика была характерна для показателей Sm, Am и SR. Второй тип динамики - достоверное увеличение значений параметра при малых дозах с последующим его снижением на пике нагрузки. Такая динамика наблюдалась в значениях Em, INT и ST. Снижение Em, INT и ST на пике нагрузки было достоверным, но небольшим по амплитуде; при этом значения указанных параметров оставались увеличенными по сравнению с их исходной величиной.

На фоне роста ЧСС у здоровых лиц также отмечалось достоверное (p

На фоне инфузии добутамина на сегментарной тканевой допплерографии в контрольной группе достоверно чаще регистрировался феномен ПСУ в виде постсистолических пиков скорости и смещения. На пике нагрузки частота выявления "седловидной" формы систолического движения возросла в 4 раза и более по сравнению с исходной величиной и в 2,5 раза по сравнению с данными, полученными при использовании малых доз. Тем не менее у здоровых лиц амплитуда Sps, как правило, не превышала Sm.

Описанные особенности нормальной динамики параметров тканевой допплерографии на фоне стресстеста могут быть полезны при разработке и использовании количественных критериев сократительной дисфункции миокарда левого желудочка.

Динамика показателей сегментарной тканевой допплерографии при стресс-ЭхоКГ у больных со стабильной стенокардией

До начала нагрузки в группе больных со стабильной стенокардией по сравнению с контрольной группой отмечались небольшое удлинение интервала TRE (517±53 мс против 503±45 мс соответственно; p=0,004), а также уменьшение индекса Em/Am (med 0,76; 0,48-1,2 против med 0,95; 0,64-1,33 соответственно; p=0,001) и увеличение индекса Sm/Em (med 0,93; 0,64-1,25 против med 0,75; 0,52-1,02 соответственно, p=0,002). При этом амплитуды пиковых скоростей, систолического смещения, а также скорость деформации и деформация значимо не различались.

На фоне инфузии малых доз добутамина значения Sm и Em у больных со стабильной стенокардией снизились по сравнению с показателями контрольной группы (5,52±4,13 см/с по сравнению с 6,49±2,90 см/с и 4,86±2,68 см/с по сравнению с 5,83±2,68 см/с соответственно; p

Амплитуда и динамика показателей сегментарной тканевой допплерографии в момент прекращения инфузии добутамина у больных со стабильной стенокардией и здоровых лиц достоверно различались. На пике нагрузки в группе больных со стенокардией были зарегистрированы достоверные признаки систоло-диастолической дисфункции: сниженные значения миокардиальных скоростей Sm (6,31±4,87 см/с в сравнении с 8,19±3,58 см/с; pОписанные выше признаки сократительной дисфункции также достоверно выявлялись у больных со стенокардией при тканевой допплерографии митрального кольца на пике стресс-ЭхоКГ.

На основании полученных результатов были предложены критерии ишемии, использующие показатели тканевой допплерографии исследуемого сегмента и тканевой допплерографии митрального кольца у основания исследуемой стенки левого желудочка. Специфичным признаком ишемии мы предлагаем считать прирост пиковой систолической скорости Sm менее 50% в сочетании с отрицательным приростом систолического смещения INT на пике стресс-ЭхоКГ. Согласно этому критерию, в 31% сегментов левого желудочка в группе больных со стабильной стенокардией были обнаружены признаки сократительной дисфункции на пике стресс-ЭхоКГ. Высокоспецифичным признаком ишемии является также сниженная скорость Sm (менее 8 см/с) на пике стресс-ЭхоКГ в точке митрального кольца у основания исследуемой стенки левого желудочка. Этот признак имелся в 33% стенок левого желудочка у больных со стенокардией и только в 12% стенок в контрольной группе.

В качестве дополнительного признака ишемии миокарда, обладающего малой чувствительностью, но высокой специфичностью, отмечено появление на тканевой допплерографии постсистолического укорочения в виде высокоамплитудного постсистолического пика скорости, смещения или деформации.

Обсуждение

Изменения показателей тканевой допплерографии, которые отмечались в подгруппах гипоакинетичных сегментов левого желудочка, полностью соответствуют описанным в литературе изменениям тканевой допплерографии в зонах с нарушенным коронарным кровоснабжением . В дополнение к известным признакам нарушенной локальной сократимости мы анализировали изменения кривой движения миокарда. Предположительно "деформация" кривой движения миокарда является следствием как систолической, так и диастолической его дисфункции. Вызванное ишемией снижение пиковой систолической скорости Sm, появление нулевых и отрицательных среднесистолических скоростей, "запаздывание" ранней диастолы и появление высокоамплитудного ПСУ в совокупности приводят к тому, что пройденный участком миокарда путь приобретает "ступенчатую" или "седловидную" форму. Это означает, что при диссинергии во второй половине систолы миокард перестает сокращаться или отмечается его кратковременное расслабление; при этом после закрытия аортального клапана происходит дополнительное псевдосокращение (ПСУ). По нашим данным, "ступенчатая" и "седловидная" формы систолического движения являются чувствительными признаками нарушенной сократимости.

Полученные результаты позволили нам сделать вывод, что для упрощенной диагностики нарушений локальной сократимости левого желудочка можно использовать оценку параметров тканевой допплерографии на уровне митрального кольца (у основания исследуемой стенки левого желудочка). Многие авторы считают, что тканевая допплерография митрального кольца отражает состояние не столько локальной, сколько глобальной сократимости левого желудочка, так как показатели тканевой допплерографии митрального кольца зависят от ФВ левого желудочка . В данном исследовании показано, что параметры тканевой допплерографии митрального кольца у основания интактных и диссинергичных стенок левого желудочка достоверно различаются даже в том случае, если сравниваются только пациенты с нормальной ФВ левого желудочка. Следовательно, показатели тканевой допплерографии митрального кольца можно использовать в случае необходимости быстро оценить сократимость стенки левого желудочка в целом, при условии что у больного не снижена ФВ.

По нашему мнению, попытки четко разграничить сегменты и стенки левого желудочка с разной степенью нарушения локальной сократимости при помощи тканевой допплерографии малоперспективны. Тканевая допплерография позволяет с высокой чувствительностью выявлять диссинергию миокарда, но отличить гипокинезию от акинезии на основании данных тканевой допплерографии нам не удалось. Вопрос о том, является ли тканевая допплерография информативной при оценке степени нарушений локальной сократимости, требует дальнейшего изучения с обязательным сопоставлением результатов с данными объективной верифицирующей методики, например сономикрометрии или ПЭТ.

Полученные результаты не имели принципиальных несоответствий с ранее описанными изменениями показателей тканевой допплерографии, которые происходят в норме и при ИБС на фоне инфузии добутамина . При этом мы выделили два типа динамики показателей тканевой допплерографии: ступенчатый прирост, пропорциональный дозе добутамина, и "двухфазную" динамику, которая представляет собой прирост при использовании малых доз и небольшое снижение на пике нагрузки. "Двухфазный " тип динамики показателей Em, INT и ST предположительно связан с увеличением и последующим снижением ударного и минутного объемов левого желудочка, которое происходит при нагрузке. Мы расцениваем снижение INT и ST как ранний признак истощения сократительного резерва, предшествующий снижению ударного и минутного объемов . Снижение скорости раннего диастолического наполнения Em, вероятнее всего, обусловлено высокой ЧСС; подобная зависимость была ранее описана в литературе .

Большинство авторов считают пиковую систолическую скорость Sm одним из наиболее информативных показателей тканевой допплерографии при диагностической стресс-ЭхоКГ, однако признают его использование ограниченным, поскольку этот показатель зависит от расположения исследуемого сегмента . В связи с этим предлагалось использовать различные количественные критерии ишемии для сегментов базальной, средней и верхушечной локализации или рассчитывать нормальную величину Sm для каждого уровня левого желудочка с помощью регрессионного анализа . Согласно полученным нами результатам, оптимальными параметрами для диагностики ИБС были процентный прирост Sm и процентный прирост INT, так как эти показатели максимально различались в сегментах больных ИБС и здоровых лиц. Полученные данные согласуются с результатами работы S. Dagdelen и соавт. , выявивших достоверную корреляцию между процентным приростом Sm на фоне инфузии добутамина и уровнем коронарного фракционного кровотока, измеренным при катетеризации. Было отмечено также, что процентный прирост Sm и INT не снижается, а достоверно повышается от основания к верхушке левого желудочка; это позволило нам предложить единые для всех сегментов левого желудочка диагностические критерии ИБС. Согласно результатам исследования MYDISE , измерения Sm и INT обладают высокой меж- и внутриоператорской воспроизводимостью. Чувствительность и специфичность предложенных нами алгоритмических критериев были сходными с полученными J. Voigt и соавт. , но оказались несколько ниже, чем в большинстве опубликованных работ . Однако приведенные нами критерии сформированы без использования верифицирующей методики, поэтому они лишь демонстрируют возможности применения тканевой допплерографии при стресс-ЭхоКГ для диагностики ИБС.

Заключение

Тканевая допплерография обладает высокой чувствительностью при выявлении нарушений локальной сократимости, в том числе не диагностируемых при обычной ЭхоКГ. Критерии на основе параметров тканевой допплерографии применимы для количественной оценки движения миокарда как в покое, так и при проведении стресс-ЭхоКГ. Для упрощенного выявления диссинергии миокарда у больных с сохраненной ФВ левого желудочка можно использовать критерии на основе тканевой допплерографии митрального кольца. Одним из специфичных признаков нарушенной сократительной функции является ПСУ, регистрируемое при тканевой допплерографии в покое.

Литература

  1. Nikitin N.P., Witte K.K., Thackray S.D. Longitudinal Ventricular Function: Normal Values of Atrioventricular Annular and Myocardial Velocities Measured with Quantitative Two-dimensional Color Doppler Tissue Imaging. J Am Soc Echocardiogr 2003; 16: 906-921.
  2. Varga A., Picano E., Dodi C. Madness and method in stress echo reading. Eur Heart J 1999; 20:1271-1275
  3. Pasquet A., Armstrong G., Beachler L. Use of Segmental Tissue Doppler Velocity to Quantitate Exercise Echocardiography. J Am Soc Echocardiogr 1999; 12: 901-912.
  4. Алехин М., Седов В., Сидоренко Б. Возможности стресс-эхокардиографии в выявлении жизнеспособного миокарда. Кардиология 1999; 2: 86-91.
  5. Derumeaux G., Ovize M., Loufoua J. et al. Doppler tissue imaging quantitates regional wall motion during myocardial ischemia and reperfusion. Circulation 2000; 101: 1390-1397.
  6. Edvardsen T., Aakhus S., Endresen K. Acute regional myocardial ischemia identified by 2-dimensional multiregion Doppler imaging tissue technique. J Am Soc Echocardiogr 2000; 13: 986-994.
  7. Hoffmann R., Lethen H., Marwick T. et al. Analysis of institutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 1996; 27: 330-336.
  8. Voigt J.U., Exner B., Schmiedehausen K. et al. Strain- Rate Imaging During Dobutamine Stress Echocardiography Provides Objective Evidence of Inducible Ischemia. Circulation 2003; 29 107: 16 2120-2126.
  9. Fraser A.G., Payne N., Madler C.F. Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr 2003; 4: 43-53.
  10. Skulstad H., Edvardsen T., Urheim S., Rabben S. Postsystolic Shortening in Ischemic Myocardium: Active Contraction or Passive Recoil? Circulation 2002; 106: 718.
  11. Voigt J.U., Lindenmeier G., Exner B. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 2003; 16: 415-423.
  12. Alam M., Hoglund C., Thorstrand C. Longitudinal systolic shortening of the left ventricle: an echocardiographic study in subjects with and without preserved global function. Clin Physiol 1992; 12: 443-452.
  13. Leitman M., Sidenko S., Wolfa R. Improved detection of inferobasal ischemia during dobutamine echocardiography with doppler tissue imaging. Am Soc Echocardiogr 2003; 16: 403-408.
  14. Palka P., Lange A., Fleming A.D. et al. Age-related transmural peak mean velocities and peak velocity gradients be Doppler myocardial imaging in normal subjects. Eur Heart J 1996; 17: 940-950.
  15. Afridi I., Quinones M., Zoghbi W., Cheirif J. Dobutamine stress echocardiography: sensitivity, specificity and predictive value for future cardiac events. Am Heart J 1994; 127: 1510-1515.
  16. Katz W.E., Gulati V.K., Mahler C.M., Gorcsan J. Quantitative evaluation of the segmental left ventricular response to dobutamine stress by tissue Doppler echocardiography. Am J Cardiol 1997; 79: 1036-1042.
  17. Altinmakas S., Dagdeviren B., Turkmen M. et al. Usefulness of pulse-wave Doppler tissue sampling and dobutamine stress echocardiography for identification of false positive inferior wall defects in SPECT. Jpn Heart J 2000; 41: 2: 141-152.
  18. ain P., Short L., Baglin T. Development of a fully quantitative approach to the interpretation of stress echocardiography using radial and longitudinal myocardial velocities. J Am Soc Echocardiogr 2002; 15: 759-767.
  19. Dagdelen S., Yuce M., Emiroglu Y., Ergelen M. Correlation between the tissue Doppler, strain rate, strain imaging during the dobutamine infusion. and coronary fractional flow reserve during catheterization: a comparative study. Intern J Cardiology 2005; 102: 127-136.
  20. Madler C.F., Payne N., Wilkenshoff U. Non-invasive diagnosis of coronary artery disease by quantitative stress echocardiography: optimal diagnostic models using off-line tissue Doppler in the MYDISE study. Eur Heart J 2003; 24: 1584-1594.
  21. Voigt J.U., Nixdorff U., Bogdan R. et al. Comparison of deformation imaging and velocity imaging for detecting regional inducible ischaemia during Dobutamine stress echocardiography Eur Heart J 2004; 25: 1517-1525.
  22. Sutherland G., Merli R.E. Can we quantify ischaemia during Dobutamine stress echocardiography in clinical practice? Eur Heart J 2004; 25: 1477-1479.


Человеческое сердце имеет огромный потенциал, оно может увеличивать объем кровообращения до 5-6 раз. Это достигается увеличением ЧСС или объема крови. Именно сократительная способность миокарда позволяет сердцу с максимальной точностью подстраиваться под состояние человека, перекачивать больше крови при повышении нагрузок, соответственно снабжать все органы нужным количеством питательных веществ, обеспечивая их правильную бесперебойную работу.

Иногда, оценивая сократимость миокарда, доктора отмечают, что сердце, даже при больших нагрузках, не повышает своей активности или делает это в недостаточном объеме. В таких случаях здоровью и функционированию органа нужно уделить особое внимание, исключая развитие таких заболеваний как гипоксия, ишемия.

Если сократимость миокарда левого желудочка снижена

Снижение сократительной способности миокарда может появляться по разным причинам. Первая – это большие перегрузки. Например, если спортсмен длительное время подвергает себя чрезмерным физическим нагрузкам, истощающим организм, со временем у него может быть обнаружено снижение сократительной функции миокарда. Это обусловлено недостаточным поступлением кислорода и питательных веществ к сердечной мышце, соответственно, невозможностью синтезировать нею должный объем энергии. Некоторое время сократительная способность будет сохранена за счет использования ним имеющихся внутренних энергетических ресурсов. Но, через определенный промежуток времени возможности будут полностью исчерпаны, сбои в работе сердца начнут проявляться более явно, появятся характерные для них симптомы. Тогда понадобится дополнительное обследование, прием энергетических лекарственных средств, стимулирующих работу сердца и обменные процессы в нем.

Наблюдается снижение сократительной способности миокарда и при наличии ряда заболеваний, таких как:

  • травма головного мозга;
  • острый инфаркт миокарда;
  • ишемическая болезнь;
  • оперативное вмешательство;
  • токсическое воздействие на сердечную мышцу.

Также она снижена, если человек страдает от атеросклероза, кардиосклероза. Причиной может стать и авитаминоз, миокардит. Если говорить про авитаминоз, то проблема решается достаточно просто, нужно лишь восстановить правильное и сбалансированное питание, обеспечивая сердце и весь организм важными питательными веществами. Когда же причиной снижения сократительной способности сердца стал серьезный недуг, ситуация обретает более серьезный характер, требует к себе повышенного внимания.

Важно знать! Нарушение локальной сократимости миокарда влечет не только ухудшение самочувствия пациента, но и развитие сердечной недостаточности. Она, в свою очередь, способна спровоцировать появление серьезных сердечных заболеваний, часто приводящих к смерти. Признаками заболевания станут: приступы удушья, отечность, слабость. Может наблюдаться учащенное дыхание.

Как определить сниженную сократимость миокарда

Для того чтобы иметь возможность получить максимальное информирование о состоянии своего здоровья, нужно пройти полноценное обследование. Обычно сниженная или удовлетворительная сократительная способность миокарда обнаруживается после проведения ЭКГ и эхокардиографии. Если результаты электрокардиограммы заставляют задуматься, не позволяют сразу поставить точный диагноз, человеку рекомендуют проведение Холтеровского мониторирования. Оно заключается в постоянной регистрации показателей работы сердца при помощи портативного электрокардиографа, крепящегося на одежду. Так можно получить более точную картину состояния здоровья, сделать окончательное заключение.

УЗИ сердца тоже считается достаточно информативным методом обследования в данном случае. Оно помогает более точно оценить состояние человека, а также функциональные особенности сердца, выявить нарушения при их наличии.

Дополнительно назначается биохимический анализ крови. Проводится систематический контроль артериального давления. Могут рекомендовать прохождение физиологического тестирования.

Как лечат сниженную сократительную способность

Первым делом пациента ограничивают в эмоциональных и физических нагрузках. Они провоцируют увеличение потребности сердца в кислороде и питательных веществах, но, если нарушена глобальная сократимость миокарда левого желудочка, сердце не сможет выполнять свою функцию, повысится риск развития осложнений. Обязательно назначают медикаментозную терапию, которая состоит из витаминных препаратов и средств, улучшающих обменные процессы в сердечной мышце, поддерживающих работоспособность сердца. Справиться с удовлетворительной сократимостью миокарда левого желудочка помогут такие лекарства:

  1. фосфокреатин;
  2. рибоксин;
  3. панангин или аспаркам;
  4. препараты железа;
  5. маточное молочко.

Обратите внимание! Если пациент не может самостоятельно оградить себя от стрессовых ситуаций, ему назначат седативные средства. Самые простые – это настойка валерианы, пустырника.

Если причиной нарушений стало сердечное или сосудистое заболевание, лечить в первую очередь будут его. Только потом, после повторной диагностики, проведения электрокардиографии сделают заключение про успешность терапии.

Что такое нормокинез сократимости миокарда

Когда доктор проводит обследование сердца пациента, он обязательно сравнивает должные показатели его работы (нормокинез) и полученные после диагностики данные. Если интересует вопрос определения нормокинеза сократимости миокарда – что это, сможет объяснить только доктор. Речь идет не про постоянную цифру, которая считается нормой, а про соотношение состояния пациента (физического, эмоционального) и показателей сократительной способности сердечной мышцы на данный момент.

После определения нарушений будет стоять задача выявления причины их возникновения, после чего можно говорить про успешное лечение, способное привести рабочие показатели сердца в норму.

Вконтакте

Способность миокарда к сокращению (инотропная функция) обеспечивает главное предназначение сердца – перекачивание крови. Она поддерживается за счет нормальных обменных процессов в миокарде, достаточного поступления питательных веществ и кислорода. Если происходит сбой одного из этих звеньев или нарушается нервная, гормональная регуляция сокращений, проводимость электрических импульсов, то сократимость падает, приводя к сердечной недостаточности.

Читайте в этой статье

Что означает снижение, повышение сократительной способности миокарда

При недостаточном поступлении энергии в миокард или обменных нарушениях организм пытается компенсировать их за счет двух основных процессов – увеличения частоты и силы сердечных сокращений. Поэтому начальные стадии болезней сердца могут протекать с повышенной сократительной способностью. При этом возрастает величина выброса крови из желудочков.



Увеличение частоты сердечных сокращений

Возможность увеличения силы сокращений в первую очередь обеспечивается гипертрофией миокарда . В мышечных клетках возрастает образование белка, повышается скорость окислительных процессов. Рост массы сердца ощутимо опережает разрастание артерий и нервных волокон. Результатом этого становится недостаточное поступление импульсов в гипертрофированный миокард, а слабое питание кровью еще больше усугубляет ишемические нарушения.

После исчерпания процессов самоподдержания кровообращения сердечная мышца слабеет, ее возможность реагировать на повышение физической нагрузки уменьшается, поэтому возникает недостаточность насосной функции. Со временем, на фоне полной декомпенсации, симптомы сниженной сократительной способности проявляются даже в состоянии покоя.

Функция сохранена – показатель нормы?

Не всегда степень недостаточности кровообращения проявляется только снижением сердечного выброса. В клинической практике имеются случаи прогрессирования заболеваний сердца при нормальном показателе сократительной способности, а также резком снижении инотропной функции у лиц со стертыми проявлениями.

Причиной такого явления считается то, что даже при существенном нарушении сократимости желудочек может продолжать поддерживать практически нормальный объем крови, поступающий в артерии. Это происходит благодаря закону Франка-Старлинга: при повышенной растяжимости мышечных волокон растет сила их сокращений . То есть при увеличении заполнения желудочков кровью в фазу расслабления они сжимаются сильнее в период систолы.

Таким образом, изменения сократительной способности миокарда нельзя рассматривать изолированно, так как они не полностью отражают степень патологических изменений, происходящих в сердце.

Причины изменения состояния

Снижение силы сердечных сокращений может возникнуть как следствие ишемической болезни, особенно при перенесенном инфаркте миокарда. С этим заболеванием связано почти 70% всех случаев недостаточности кровообращения. Помимо ишемии, к изменению состояния сердца приводят:

  • или на фоне ревматизма;
  • кардиомиопатия с расширением полостей ();
  • сахарный диабет.

Степень снижения инотропной функции у таких пациентов зависит от прогрессирования основного заболевания. Кроме главных этиологических факторов, снижению резервных возможностей миокарда способствуют:

При таких состояниях чаще всего удается практически полностью восстановить работу сердца, если вовремя устранить повреждающий фактор.

Проявления сниженной сократимости миокарда

При выраженной слабости сердечной мышце в организме возникают и прогрессируют нарушения кровообращения. Они затрагивают постепенно работу всех внутренних органов, так как существенно нарушается питание кровью и выведение продуктов обмена веществ.



Классификация острых нарушений мозгового кровообращения

Изменения газообмена

Медленное движение крови усиливает поглощение клетками кислорода из капилляров, возрастает . Накопление продуктов метаболизма приводит к стимуляции дыхательной мускулатуры. Организм страдает от недостатка кислорода, так как система кровообращения не может удовлетворить его потребности.

Клиническими проявлениями голодания являются одышка и синюшная окраска кожи. Цианоз может возникнуть как из-за застоя в легких, так и при повышенном поглощении кислорода в тканях.

Задержка воды и отеки

Причинами развития отечного синдрома при снижении силы сердечных сокращений являются:

  • медленный кровоток и задержка внутритканевой жидкости;
  • сниженное выведение натрия;
  • расстройство обмена белков;
  • недостаточное разрушение альдостерона в печени.

Вначале задержку жидкости можно определить по нарастанию веса тела и уменьшению выделения мочи . Затем из скрытых отеков они становятся видимыми, возникают на голенях или крестцовой зоне, если пациент находится в лежачем положении. По мере прогрессирования недостаточности вода накапливается в брюшной полости, плевре и околосердечной сумке.

Застойные явления

В легочной ткани застой крови проявляется в виде затруднений при дыхании, кашля, выделения мокроты с кровью, приступов удушья, ослабления дыхательных движений. В большом круге кровообращения признаки застоя определяют по увеличению печени, которое сопровождается болью и тяжестью в области правого подреберья.

Нарушение внутрисердечного кровообращения возникает при относительной недостаточности клапанов из-за расширения полостей сердца . Это провоцирует учащение пульса, переполнение шейных вен. Застой крови в органах пищеварения вызывает тошноту и потерю аппетита, что в тяжелых случаях становится причиной истощения (кахексии).

В почках повышается плотность мочи, падает ее выделение, канальцы становятся проницаемыми для белка, эритроцитов. Нервная система реагирует на недостаточность кровообращения быстрой утомляемостью, низкой переносимостью умственных нагрузок, бессонницей по ночам и сонливостью днем, эмоциональной нестабильностью и депрессией.

Диагностика сократительной способности желудочков миокарда

Для определения силы миокарда используется показатель величины фракции выброса. Она рассчитывается как соотношение между поступившим количеством крови в аорту к объему содержимого левого желудочка в фазе расслабления. Измеряется в процентах, определяется при УЗИ автоматически, программой обработки данных.

Нормой считается, если значение оказывается в пределах 55 — 60%. При недостаточности сократительной способности она падает до 35 — 40%.

Повышенный сердечный выброс может быть у спортсменов, а также при развитии гипертрофии миокарда на начальной стадии. В любом случае фракция выброса не превышает 80%.

Кроме УЗИ, пациентам при подозрении на снижение сократительной способности сердца проводятся:

  • анализы крови – электролиты, содержание кислорода и углекислого газа, кислотно-основного равновесия, почечные и печеночные пробы, липидный состав;
  • для определения гипертрофии и ишемии миокарда, стандартная диагностика может быть дополнена ;
  • для выявления пороков, последствий ишемической и гипертонической болезни;
  • рентгенография органов грудной клетки – увеличение сердечной тени, застой в легких;
  • радиоизотопная вентрикулография показывает вместимость желудочков и их сократительные возможности.

При необходимости также назначается УЗИ печени и почек.

Смотрите на видео о методах обследования сердца:

Лечение в случае отклонения

При острой недостаточности кровообращения или декомпенсации хронической лечение проводится в условиях полного покоя и постельного режима. Все остальные случаи требуют ограничения нагрузок, снижения потребления соли и жидкости.

Медикаментозная терапия включает такие группы препаратов:

  • сердечные гликозиды (Дигоксин, Коргликон), они увеличивают силу сокращений, выделение мочи, насосную функцию сердца;
  • (Лизиноприл, Капотен, Пренеса) – понижают сопротивление артерий и расширяют вены (депонирование крови), облегчают работу сердца, повышают сердечный выброс;
  • нитраты ( , Кардикет) – улучшают коронарный кровоток, расслабляют стенки вен и артерий;
  • мочегонные (Верошпирон, Лазикс) – выводят избыток жидкости и натрия;
  • бета-блокаторы (Карведилол) – снимают тахикардию, повышают заполнение желудочков кровью;
  • антикоагулянты ( , Варфарекс) – увеличивают текучесть крови;
  • активаторы обмена в миокарде ( , Милдронат, Неотон, ).

Сократительная способность сердца обеспечивает поступление крови к внутренним органам и выведение из них продуктов обмена. При развитии болезней миокарда, стрессах, воспалительных процессах в организме, интоксикации сила сокращений снижается. Это приводит к возникновению отклонений в работе внутренних органов, нарушению газообмена, отекам и застойным процессам.

Для определения степени снижения инотропной функции используется показатель фракции выброса. Его можно установить при УЗИ сердца. Для улучшения работы миокарда требуется комплексная медикаментозная терапия.

Читайте также

Возникает гипертрофия левого желудочка сердца в основном из-за повышенного давления. Причины могут быть даже в гормональном фоне. Признаки и показания на ЭКГ довольно выражены. Бывает умеренная, концентрическая. Чем опасна гипертрофия у взрослых и детей? Как лечить патологию сердца?

  • Патология дилатационная кардиомиопатия - опасное заболевание, которое может спровоцировать внезапную смерть. Как проводится диагностика и лечение, какие могут возникнуть осложнения при застойной дилатационной кардиомиопатии?
  • Под действием определенных заболеваний развивается дилатация сердца. Она может быть в правых и левых отделах, желудочках, полостей миокарда, камер. Симптоматика у взрослых и ребенка схожа. Лечение в первую очередь направлено на заболевание, которое привело к дилатации.
  • В случаях сердечных заболеваний, в том числе стенокардии и прочих, назначают Изокет, применение которого допускается в форме спрей и капельниц. Показаниями считается и ишемия сердца, а вот противопоказаний много.


  • Альбина спрашивает:

    Здравствуйте. У меня перебои в сердце с раннего детства. Хочу сначала описать то, что было в декабре 2014. Мне 44 года, еще с детства меня беспокоят экстрасистолы, но я их раньше не ощущала, только три года назад стали беспокоить приступы, которые длились несколько секунд: сердце как то непонятно билось, как будто оно не одно и вываливается в горло. Такие приступы были раз в полгода, а то и реже. В 2012 году я сделала мониторирование по Холтеру: 27000 наджелудочковых и 83 желудочковых экстрасистол, УЗИ сердца без патологий. Кардиолог мне назначила препараты, но пропить я их не успела, так как попала на операцию по поводу внематочной беременности. Всегда с собой ношу анаприлин на всякий случай и корвалол. Заметила, что перебои ощущаю после того как понервничаю. В июле 2014 года снова перенесла операцию по удалению трубы, все лето психовала. Вот уже вторую неделю ощущаю толчки в сердце и перебои, делала повторно холтер неделю назад: 26000 наджелудочковых экстрасистол и 14 желудочковых, а так же зарегистрировано ритм синусовый и 1007 моментов аритмии, мое давление 120/90 или 120/100 120/80 110/80. По УЗИ сердца: стенки аорты и клапанные структуры повышенной эхогенности. Во время физических нагрузок я не ощущаю перебои, и ритм восстанавливается, а так еще у меня синусовая тахикардия 90-120. Принимать антиаритмики я боюсь обратного эффекта и пользуюсь только анаприлином при необходимости. Помогите мне, я боюсь внезапной остановки сердца. Спасите меня, что мне делать?

    Работаю я заведующей в детском саду, можно ли мне вести обычный образ жизни как избавиться от страха? Можно ли мне принимать Пропанорм? Через три месяца экстрасистолы опять дали о себе знать. Пью 10 мг анаприлина в сутки, иногда хватает на сутки, иногда нет. Также принимаю по 30 капель настойки боярышника и Магне В6, но толку нет, я боюсь, что сердце резко остановиться и все… Насколько это смертельно? Я просто не могу сейчас лечь в стационар, да у нас в селе его и нет. (Страдаю также шейно-грудным остеохондрозом, щитовидка в норме, слева сзади спины как будто кол забили в позвоночник, и вся грудь болит — ЭКГ только систолы) Мне очень страшно! Я бы и не боялась, но я ощущаю как остановку сердца, и тут все начинается. Сразу анаприлин 10 мг под язык тогда лучше, но страх и паника всегда и жду их-систолы-снова. А сегодня дали расшифровку кардиограммы и там: блокада левой ножки пучка Гиса, ЭОС влево, ритм синусовый не регулярный и вот эта блокада меня очень напугала, читала, что при ней очень часто умирают, хотя на холтере этого нет.

    Ответ врача:

    Здравствуйте! Давайте не будем нервничать. Уверяю, что наджелудочковая экстрасистолия еще никого не сводила в могилу. Так что Вашей жизни точно ничего не угрожает.

    Вместе с тем, такое количество экстрасистол, да еще на фоне тахикардии просто «механически» мешает Вам нормально жить, поэтому их количество лучше уменьшить. Для этого можно использовать тот же анаприлин, но помните, что анаприлин — препарат короткого действия и работает 3-4 часа, поэтому, для достижения эффекта, его нужно принимать 3-4 раза в день. Для того чтобы этого избежать, попробуйте бета-блокатор продленного действия — метопролол. Дозу подберите вместе с Вашим кардиологом — я могу рекомендовать, не зная Вас, не адекватную дозу. Либо нам придется продолжить переписку.

    Еще обращает на себя внимание гиперэхогенность аорты и клапанных структур, а также блокада. Это опять-таки не опасно для жизни, но может быть симптомом прогрессирующего атеросклероза. Если сочтете необходимым, вышлите полное описание ЭХО и сделайте липидограмму.

    Альбина спрашивает:

    Спасибо. По поводу блокады могут сказать, что блокада под вопросом, т.к. по Холтеру написано, что блокад не выявлено. И скажите еще, что такое липидограмма? И как лечить атеросклероз? Хочу еще добавить, что как только я слышу, что ЭС не смертельны, то сразу успокаиваюсь, и мне как бы легче, ведь понимаете перебои перебоями, а вот перевороты сердца я чувствую не всегда, и в ноябре их ощущала целых три недели, а потом 4 месяца нет, только иногда. А вот сейчас уже 2 месяца ощущаю и пугаюсь, опять-таки и все становиться хуже, а анаприлин мне не проблема сколько раз в день принимать главное, что я его уже проверила. Просто у меня всегда страх перед новыми препаратами даже не сердечными. Причина ЭС не ясна. Вчера сдала анализы на гормоны щитовидной железы — все идеально. Почему стала чувствовать выпадение пульса? Могу ли я продолжать принимать анаприлин по 10 мг 2 раза в день иногда правда, и он не помогает, но другие препараты типа беталок и пропанорм принимать вообще боюсь. Как с этим со всем жить?

    Вот описание ЭХО-АОРТА-2,8 при норме 37; левое предсердие 3,2 при норме до 3,6; полость левого желудочка 5,0 при норме до 5,5; сократимость миокарда левого желудочка удовлетворительная; межжелудочковая перегородка утолщена 1.1 при норме 0,7-0,9; задняя стенка утолщена 1,1 при норме до 1,1; противофаза уменьшена 2,2 при норме до 1,9; правый желудочек расширен 1,0 при норме 2,6; патологические потоки в полости сердца не выявлены. Заключение: полости сердца не расширены, сократимость миокарда удовлетворительная. По ДКГ (НЕ ПОНЯТНО НАПИСАНО) — без патологий. Стенки аорты и клапанные структуры повышенной эхогенности. И еще на Холтере есть пометка, что блокады не выявлены.

    Ответ врача:

    Липидограмма — это анализ крови на уровень холестерина и его фракций. Атеросклероз, пока он не диагностирован, лечить не нужно. В качестве профилактики — регулярные умеренные физические нагрузки, гипохолестериновая диета. Экстрасистолы могут быть результатом вегетативного дисбаланса (вегето-сосудистая дистония) либо, не редко, проблем с желудочно-кишечным трактом — гастриты, холециститы, панкреатиты, диафрагмальные грыжи. В этом случае лечить нужно основное заболевание. Анаприлин нужно принимать, только если беспокоит частая экстрасистолия. В качестве курсового лечения примите в течение 2 месяцев препараты валерианы либо адаптол по 1 таблетке 2 раза в день.

    Альбина спрашивает:

    Мне назначили Беталок ЗОК по 1,25, 2 раза в день. Я вот что хотела спросить: в самом холтерсковом мониторе встречаются такие слова: вариабельность ритма нормальная. Турбулентность сердечного ритма, а в заключении, кроме того, что много наджелудочковых систол, еще есть предложение: «Нарушение процессов реполяризации в миокарде по регистрирующимся отведениям». Что все это значит?

    Ответ врача:

    На обозначенные Вами термины не обращайте внимания — они ничего не значат для оценки ЭКГ и для Вашего состояния. Эти опции созданы как дополнительная информация для специалистов, помогающая оценить характер сердечной деятельности.

    1. 27.04.2015 в 14:20
    2. 27.04.2015 в 14:26
    3. 27.04.2015 в 17:26
    4. 27.04.2015 в 17:27
    5. 07.05.2015 в 11:44

    Оставляя комментарий, вы принимаете Пользовательское соглашение

    • Аритмия
    • Атеросклероз
    • Варикоз
    • Варикоцеле
    • Геморрой
    • Гипертония
    • Гипотония
    • Диагностика
    • Дистония
    • Инсульт
    • Инфаркт
    • Ишемия
    • Кровь
    • Операции
    • Сердце
    • Сосуды
    • Стенокардия
    • Тахикардия
    • Тромбоз и тромбофлебит
    • Сердечный чай
    • Гипертониум
    • Браслет от давления
    • Normalife
    • Аллапинин
    • Аспаркам
    • Детралекс
    1. Общая характеристика блокаторов кальциевых каналов
    2. Зачем блокировать кальций?
    3. Как классифицируют препараты?
    4. Поколения БКК
    5. Свойства БКК
    6. Показания к применению
    7. Побочные эффекты
    8. Противопоказания к применению
    9. Препараты БКК
    10. Блокаторы калия или кальция?

    Артериальная гипертензия – это заболевание, требующее обязательной медикаментозной терапии. Фармацевтические компании из года в год трудятся над созданием новых, более эффективных лекарств для борьбы с этим недугом. И сегодня существует огромное количество препаратов, которые способны регулировать кровяное давление. Блокаторы медленных кальциевых каналов (БКК) или антагонисты кальция – одна из групп препаратов, которые широко применяются в этих целях.

    Общая характеристика блокаторов кальциевых каналов

    Антагонисты кальция имеют разнообразное химическое строение, но не отличаются своим механизмом действия. Он заключается в блокировании попадания ионов кальция в клетки миокарда и стенок кровеносных сосудов по особым медленным кальциевым каналам. Представители группы не только уменьшают число ионов этого элемента, попавших в клетки, но и влияют на их движение внутри клеток. В результате расширяются периферические и коронарные кровеносные сосуды. Благодаря такому выраженному сосудорасширяющему действию происходит снижение давления.

    Антагонисты кальция – одни из самых действенных средств для лечения гипертонии, принадлежащие к «первой линии». Им отдается предпочтение для лечения людей пожилого возраста, со стабильной стенокардией, систолической гипертензией, дислипидемией, нарушениями периферического кровообращения, поражениями паренхимы почек.

    Зачем блокировать кальций?

    Кальций-ионы выполняют значимую роль в регулировке функционирования всех органов сердечно-сосудистой системы. Они контролируют частоту сокращений сердца, регулируют сердечную деятельность и сократительную функцию миоцитов. Если наблюдается переизбыток ионов этого микроэлемента или же нарушаются процессы его выведения из клеток, то происходит разлад специфических функций клетки, что вызывает нарушения насосной деятельности сердца, в результате чего повышается давление.

    Как классифицируют препараты?

    Классифицируют БКК по разным признакам – химическому строению, длительности действия, тканевой специфичности. Все же наиболее часто применяемая классификация блокаторов кальциевых каналов по их химическому строению. Согласно с ней выделяют:

    • фенилалкиламины;
    • дигидропиридины;
    • бензотиазепины.

    Дигидропиридиновые блокаторы кальциевых каналов оказывают преобладающее действие на сосуды и почти не выявляют его на миокард. Из-за своего вазодилатирующего действия они учащают сокращения сердца, что делает невозможным их прием гипертониками, имеющими проблемы с сердцем. Это негативное действие практически не выражено у препаратов 2 и 3 поколения, которые обладают более длительным периодом полувыведения. Доказана способность препаратов дигидропиридинового ряда оказывать антиоксидантное, антиагрегантное, ангиопротекторное действие, снижать проявления атеросклеротических поражений и повышать действие статинов. Пролонгированные дигидропиридины эффективно понижают артериальное давление и практически не проявляют побочных эффектов.

    К этой группе принадлежат: нифедипин, исрадипин, амлодипин, фелодипин, лерканидипин, нитрендипин, лацидипин.

    Бензотиазепины и фенилалкиламины наоборот понижают частоту сокращений сердца благодаря одинаковому влиянию на миокард и сосуды. Это сделало их средствами выбора для терапии пациентов с гипертонией совместно со стабильной стенокардией.

    Препараты этих недигидропиридиновых групп подавляют автоматизм синусового узла, понижают сократимость сердца, предотвращают спазм коронарных артерий, снижают периферическое сопротивление в сосудах. К этой группе относятся верапамил и дилтиазем.

    Поколения БКК

    Существует и иная классификация антагонистов кальция. Она основывается на особенностях проявляемого влияния на организм, длительности их действия и тканевой селективности. Выделяют блокаторы кальциевых каналов:

    • 1-го поколения (дилтиазем, нифедипин, верапамил);
    • 2-го поколения (нифедипин SR, фелодипин, дилтиазем SR, нисолдипин, верапамил SR, манидипин, бенидипин, нилвадипин, нимодипин);
    • 3-го поколения (лацидипин, лекарнидипин, амлодипин).

    Первое поколение применяется ограниченно из-за малой биодоступности, высокого риска развития побочных действий, а также недолгого эффекта.

    Второе поколение более совершенно в этих показателях, однако некоторые представители также имеют короткое действие. При создании 3-го поколения были учтены все недостатки предыдущих. В результате этого получились препараты, обладающие длительным действием, высоким показателем биодоступности и высокой тканевой селективностью.

    Свойства БКК

    Антагонисты кальция весьма разнообразны по своей химической структуре, а поэтому могут оказывать различные воздействия:

    • понижение артериального давления;
    • регуляция сердечного ритма;
    • уменьшение механического напряжения в миокарде;
    • улучшают мозговое кровообращение при атеросклерозе головных сосудов;
    • предупреждают тромбообразование;
    • подавляют чрезмерную выработку инсулина;
    • понижают давление в легочной артерии.

    Показания к применению

    БКК могут применяться:

    • в моно- или комбинированной терапии гипертензии;
    • для устранения систолической гипертензии, особенно у пожилых пациентов;
    • при артериальной гипертензии и ишемической болезни сердца на фоне сахарного диабета, подагры, заболеваний почек, бронхиальной астмы;
    • при вазоспастической стенокардии;
    • для лечения стабильной стенокардии напряжения;
    • как альтернатива при непереносимости бета-блокаторов.

    Побочные эффекты

    Лекарства этой группы имеют как общие, так и характерные для отдельных подгрупп побочные действия. Так, абсолютно все БКК могут вызвать:

    • аллергические реакции;
    • головокружение;
    • чрезмерное понижение давления;
    • головные боли;
    • периферическую отечность (особенно часто отекают голени и лодыжки у пожилых пациентов);
    • ощущение «приливов» и покраснение лица.

    Дигидропиридиновые антагонисты кальция могут также провоцировать тахикардию. Более всего этот негативный эффект характерен для нифедипина.

    Недигидропиридиновые представители БКК могут нарушать атриовентрикулярную проводимость, вызывать брадикардию, понижать автоматизм синусового узла. Верапамил помимо этого часто становится причиной запоров и токсического действия на печень.

    Противопоказания к применению

    Прием БКК запрещен при:

    • выраженной гипотензии;
    • систолической дисфункции левого желудочка;
    • остром инфаркте миокарда;
    • тяжелом аортальном стенозе;
    • геморрагическом инсульте;
    • атриовентрикулярной блокаде 2-3 степени;
    • в 1-ом триместре беременности;
    • при кормлении грудью.

    С осторожностью и учетом всех рисков БКК могут применяться:

    • в 3-ем триместре беременности;
    • при циррозе печени;
    • при стенокардии.

    Следует учитывать, что препараты недигидропиридиновой группы нельзя принимать одновременно с бета-адреноблокаторами, а дигидропиридиновые блокаторы запрещается комбинировать с приемом нитратов, празозина, сульфатом магния.

    Препараты БКК

    Совместный список блокаторов кальциевых каналов, применяемых в терапии гипертензии:

    • Верапамил (Изоптин, Лекоптин, Финоптин);
    • Дилтиазем (Дилрен, Кардил, Дилзем);
    • Нифедипин (Коринфар, Адалат, Кордафлекс, Кордипин-ретард);
    • Амлодипин (Амло, Стамло, Амловас, Нормодипин, Норваск);
    • Фелодипин (Фелодип, Плендил);
    • Нитрендипин (Унипресс, Байпресс);
    • Лацидипин (Лацидип);
    • Лерканидипин (Леркамен).

    Ни в коем случае нельзя назначать себе какие-либо препараты самостоятельно. Обязательно следует пройти обследование и получить назначения у врача с учетом всех особенностей организма, тяжести протекания болезни и наличия сопутствующих заболеваний.

    Блокаторы калия или кальция?

    Нередко пациенты путают блокаторы кальциевых каналов с блокаторами калиевых каналов. Но это совершенно разные вещества. Блокаторы калиевых каналов – это лекарственные препараты 3 класса антиаритмических средств. Они оказывают свое действие благодаря замедлению тока калия сквозь мембраны кардиомиоцитов. Это понижает автоматизм синусового узла и тормозит атриовентрикулярную проводимость. Эта группа препаратов на полках аптек представлена амиодароном (Кордарон, Амиокордин, Кардиодарон), соталом (Соталекс, СотаГексал).

    Сократимость сердца — это способность миокарда отвечать на возбуждение сокращением.

    Сокращение миокарда следует за его и в кардиомиоцитах, как и в скелетных мышцах, существует специальный механизм сопряжения (трансформации) электрических процессов возбуждения в механические — сокращение.

    Уже упоминалось о том, что возбуждение распространяется по плазматической мембране кардиомиоцитов, которая образует поперечные впячивания вглубь клетки (Т-трубочки, каналы). Они располагаются в миоците таким образом, что достигают области Z-линии саркомера и обычно каждая трубочка контактируют с двумя цистернами саркоплазматического ретикулума. Мембрана Т-трубочек имеет одинаковые с сарколеммой кардиомиоцита строение и свойства, благодаря которым потенциал действия проводится по ней в глубину кардиомиоцита и деполяризует концевые участки ее самой и мембрану близлежащей цистерны саркоплазматического ретикулума. В Т-трубочках содержится внеклеточный кальций.

    Кардиомиоциты содержат целую сеть поперечных Т-каналов, цистерн и трубочек саркоплазматического ретикулума. Внутриклеточная саркоплазматическая сеть трубочек и цистерн является хранилищем ионов Са 2 +. Она занимает около 2% объема кардиомиоцита и менее выражена, чем в миоцитах скелетных мышц. Наиболее бедно сеть представлена в кардиомиоцитах предсердий. Количество кальция, содержащегося в саркоплазматическом ретикулуме кардиомиоцитов, может быть недостаточным для инициации и обеспечения достаточно сильного и продолжительного их сокращения. Дополнительными источниками кальция, необходимого для возбуждения и сокарщения кардиомиоцитов, являются внеклеточный и примембранный пулы кальция. Благодаря небольшим размерам кардиомиоцитов кальций каждого из этих трех источников может достаточно быстро достигать сократительных белков. Этому способствует ряд механизмов.

    Уже упоминалось, что мембраны кардиомиоцитов содержат потенциалзависимые, чувствительные к дигидропиридину медленные кальциевые каналы и часть кальция поступает в клетку в процессе возбуждения. Этот кальций участвует как в процессах генерации потенциала действия кардиомиоцитов, так и в его проведении и сокращении клетки. Его поступление оказывается достаточным для инициирования и обеспечения кратковременного, небольшой силы сокращения миоцитов предсердий.

    Для обеспечения более сильного и более продолжительного сокращения миокарда желудочков используются два других дополнительных источника кальция. Входящие по одноименным каналам ионы Са 2+ вызывают высвобождение кальция, связанного с примембранной областью сарколеммы. Поступающие в кардиомиоцит ионы Са 2+ являются своеобразным триггером, запускающим процесс высвобождения кальция из саркоплазматического ретикулума. Предполагается, что поступивший в клетку внеклеточный кальций способствует активации и открытию потенциалзависимых кальциевых каналов мембран саркоплазматического ретикулума миоцитов. Эти каналы чувствительны также к действию вещества рианодина (рианодинчувствитсльны). Поскольку концентрация кальция в цистернах саркоплазматического ретикулума на несколько порядков превышает его концентрацию в саркоплазме, то ионы Са 2+ быстро диффундируют в саркоплазму по концентрационному градиенту. Повышение уровня кальция в саркоплазме с 10 -7 М (0,1-1,0 ммоль/л) до уровня 10 -6 - 10 -5 М (10 ммоль/л) обеспечивает его взаимодействие с тропонином (TN) С и инициирует последующую цепь событий, ведущих к сокращению миоцитов и началу систолы. Образование комплекса Са 2+ - TN С способствует активации актомиозиновой АТФазы, кальциевой АТФазы и, возможно, чувствительности самих миофиламентов к кальцию.

    Как уже обсуждалось, значительное количество кальция поступает в миоцит из внеклеточной среды во время фазы плато потенциала действия через открытые кальциевые каналы L-типа. Этот кальциевый ток, вероятно, может индуцировать дальнейшее высвобождение кальция из саркоплазматического ретикулума. Кальций может поступать в клетку также через каналы щелевых контактов из соседних кардиомиоцитов. От количества кальция, содержащегося в саркоплазме кардиомиоцитов зависит сократимость миокарда. Накапливающегося в нормальных условиях в саркоплазме кальция достаточно лишь для активации части миофиламентов и образования ак- томиозиновых комплексов. При повышении концентрации кальция число активированных миофиламентов и сократимость миокарда возрастают.

    Таким образом, ионы Са2+ не только участвуют в генерации возбуждения, но и выполняют функцию трансформации электрических процессов возбуждения в механические — сокращение кардиомиоцитов. Совокупность этих процессов называют сопряжением возбуждения и сокращения или электромеханическим сопряжением.

    Сокращение миокарда

    Большая часть объема кардиомиоцитов занята миофибриллами, выполняющими сократительные функции. Как и в клетке скелетной мышцы, миофи- бриллы в кардиомиоците образуют повторяющиеся по структуре саркомеры длиной около 2 мкм в состоянии диастолы.

    Собственно молекулярный механизм сокращения миокарда и поперечно-полосатой мускулатуры практически одинаков (см. механизм сокращения скелетных мышц).

    На сокращение миокарда затрачивается большое количество энергии АТФ, которая синтезируется в нем почти исключительно в ходе процессов аэробного окисления и около 30% объема кардиомиоцита приходится на митохондрии. Запасаемой АТФ в кардиомиоците достаточно для осуществления лишь нескольких сокращений сердца и, учитывая, что сердце постоянно сокращается, клеткам необходимо постоянно синтезировать АТФ в количествах, адекватных интенсивности сердечной деятельности. В кардиомиоцитах имеются небольшие количества гликогена, липидов и оксимиоглобина, используемых для получения АТФ в условиях кратковременного нарушения питания. Миокард характеризуется высокой плотностью капилляров, обеспечивающих эффективное извлечение из крови кислорода и питательных веществ.

    Эффективность сокращения миокарда обеспечивается также его несократительными структурными компонентами. Внутри кардиомиоцитов имеется разветвленная сеть цитоскелета. Она сформирована промежуточными филаментами и микротрубочками. Главный белок филаментов — десмин — участвует в фиксации Z-пластинок к сарколемме, а итегрины — в формировании связей между миофиламентами и внеклеточным матриксом. Микротрубочки внутриклеточного цитоскелета, образованные белком тубулином, способствуют фиксации и направленному перемещению в клетке внутриклеточных органелл.

    Внеклеточные структуры сердца построены главным образом коллагеном и фибронектином. Фибронекнин играет роль в процессах клеточной адгезии, миграции клеток, является хемоаттрактантом для макрофагов и фибробластов.

    Коллаген формирует сухожильную сеть и связи с клеточными мембранами кардиомиоцитов. Коллаген и десмосомы интеркалированных дисков создают механическую пространственную опору клеткам, предопределяют направление передачи усилия, предохраняют миокард от перерастяжения, определяют форму и архитектуру сердца. Мышечные волокна не имеют однонаправленной ориентации в разных слоях миокарда. В поверхностных слоях, прилежащих к эпикарду и эндокарду, волокна ориентированы под прямым углом к внешней и внутренней поверхностям миокарда. В средних слоях миокарда превалирует продольная ориентация мышечных волокон. Эластические волокна внутри и во внеклеточном матриксе запасают энергию во время и высвобождают ее во время диастолы.

    Продолжительность одиночного сокращения кардиомиоцитов почти совпадает с длительностью их ПД и рефрактерного периода. Как и в случае миоцитов скелетных мышц, прекращение сокращения и начало расслабления кардиомиоцитов зависит от понижения уровня кальция в саркоплазме. Удаление ионов Са 2+ из саркоплазмы осуществляется несколькими путями. Часть ионов Са 2+ возвращается с помощью насоса — кальциевой АТФазой в саркоплазматический ретикулум, часть — во время диастолы откачивается подобной АТФазой сарколеммы во внеклеточную среду. В удалении кальция из клетки важную роль играет активный натрий-кальциевый обменный механизм, в котором выкачивание трех ионов Na+ сопряжено с удалением одного иона Са 2+ из клетки. При избыточном накоплении кальция в клетке он может поглощаться ее митохондриями. Ионы Са 2+ являются не только главным звеном сопряжения процессов возбуждения и сокращения кардиомиоцитов, от прироста их концентрации зависят начало, скорость, сила сокращения, начало расслабления миокарда, поэтому регуляция динамики изменения концентрации кальция в кардиомиоците является важнейшим механизмом контроля сократимости, продолжительности систолы и диастолы сердца. Регуляция динамики изменения концентрации кальция в саркоплазме создает условия для согласования сокращения и расслабления миокарда с частотой поступления к нему потенциалов действия из проводящей системы.

    Эластичность и растяжимость

    Обусловлены наличием в миокарде эластических структурных компонентов внутриклеточного цитоскелета миоцитов, внеклеточного матрикса, белков соединительной ткани и многочисленных сосудов. Эти свойства сердечной мышцы играют важную роль в смягчении гидродинамического удара крови о стенки желудочков при их быстром наполнении или увеличении напряжения.

    Эластические волокна запасают часть потенциальной энергии во время растяжения желудочков и отдают ее обратно при сокращении миокарда, способствуя возрастанию силы сокращения. В конце систолы кардиомиоциты сокращены и при сжатии миокарда часть энергии вновь запасается в его эластических структурах. Отдавая миокарду запасенную во время систолы энергию, эластические структуры способствуют его быстрейшему расслаблению и восстановлению исходной длины его волокон. Энергия эластических структур миокарда способствует формированию присасывающего действия желудочков на притекающую к ним кровь во время диастолы.

    Миокард благодаря наличию в нем эластических структур и жестких коллагеновых волокон увеличивает сопротивление растяжению при его наполнении кровью. Величина сопротивления возрастает при увеличении растяжения. Это свойство миокарда вместе с жестким перикардом предохраняет сердце от перерастяжения.

    Похожие публикации