Реакции щелочных металлов с неметаллами. Щелочные металлы и их соединения

Щелочные металлы .

Щелочные металлы — элементы главной подгруппы I группы Периодической системы химических элементов Д. И. Менделеева:

литий Li, натрий Na, калий K, рубидий Rb, цезий Cs и франций Fr.

Данные металлы получили название щелочных, потому что большинство их соединений растворимо в воде. По-славянски «выщелачивать» означает «растворять», это и определило название данной группы металлов. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами.

Основная характеристика щелочных металлов: В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на новом энергетическом уровне: их электронная конфигурация ns1.

Валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа.

Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — один из самых низких) и электроотрицательности (ЭО).
Далее таблица свойств щелочных металлов:

Свойства щелочных металлов
Атомный
номер
Название,
символ
Металлический
радиус, нм
Ионный
радиус, нм
Потенциал
ионизации, эВ
ЭО p,
г/см³
t пл,
°C
t кип,
°C
3 Литий Li 0,152 0,078 5,32 0,98 0,53 181 1347
11 Натрий Na 0,190 0,098 5,14 0,93 0,97 98 883
19 Калий K 0,227 0,133 4,34 0,82 0,86 64 774
37 Рубидий Rb 0,248 0,149 4,18 0,82 1,53 39 688
55 Цезий Cs 0,265 0,165 3,89 0,79 1,87 28 678

Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней.

Щелочные металлы встречаются в природе в форме соединений, содержащих однозарядные катионы.

Многие минералы содержат в своём составе металлы главной подгруппы I группы. Например, ортоклаз, или полевой шпат, состоит из алюмюсиликата калия K2, аналогичный минерал, содержащий натрий — альбит — имеет состав Na2. В морской воде содержится хлорид натрия NaCl, а в почве — соли калия — сильвин KCl, сильвинит NaCl . KCl, карналлит KCl . MgCl2 . 6H2O, полигалит K2SO4 . MgSO4 . CaSO4 . 2H2O.

Химические свойства щелочных металлов
Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, азоту их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.

1. Взаимодействие с водой. Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:

При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.
2. Взаимодействие с кислородом. Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.

Только литий сгорает на воздухе с образованием оксида стехиометрического состава:

При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2:

В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды:

Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:

Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О22-и надпероксид-ион O2-.

Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО3. Все кислородные соединения имеют различную окраску, интенсивность которой углубляется в ряду от Li до Cs:

Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:

Пероксиды и надпероксиды проявляют свойства сильных окислителей:

Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:

3. Взаимодействие с другими веществами. Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованием гидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов, сульфидов, нитридов, фосфидов, карбидов и силицидов:

При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) реагируют щелочные металлы с кислотами.

Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах:

При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака:

Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):

4. Качественное определение щелочных металлов. Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:

Получение щелочных металлов
1. Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:

катод: Li+ + e → Li
анод: 2Cl- — 2e → Cl2
2. Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:

Катод: Na+ + e → Na
анод: 4OH- — 4e → 2H2O + O2
Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.

Соединения щелочных металлов. Гидроксиды

Щелочны́е мета́ллы - это элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации - элементы главной подгруппы I группы) : литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, и унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами .

Химические свойства щелочных металлов

Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li, Cs) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.

1. Взаимодействие с водой . Важное свойство щелочных металлов - их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водойлитий:

При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.

2. Взаимодействие с кислородом . Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.

· Только литий сгорает на воздухе с образованием оксида стехиометрического состава:

· При горении натрия в основном образуется пероксид Na 2 O 2 с небольшой примесью надпероксида NaO 2:

· В продуктах горения калия , рубидия и цезия содержатся в основном надпероксиды:

Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:

Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О 2 2− и надпероксид-ион O 2 − .

Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО 3 . Все кислородные соединения имеют различную окраску, интенсивность которой углубляется в ряду от Li до Cs:

Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:

Пероксиды и надпероксиды проявляют свойства сильных окислителей :

Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:

3. Взаимодействие с другими веществами . Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованиемгидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов , сульфидов , нитридов , фосфидов , карбидов исилицидов :

При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды . Активно (со взрывом) реагируют щелочные металлы скислотами.

Щелочные металлы растворяются в жидком аммиаке и его производных - аминах и амидах:

При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиесяамиды легко разлагаются водой с образованием щёлочи и аммиака:

Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):

4. Качественное определение щелочных металлов . Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:

Окраска пламени щелочными металлами
и их соединениями

Щелочноземельные металлы.

Щё́лочноземе́льные мета́ллы - химические элементы II-й группы периодической таблицы элементов: бериллий, магний, кальций,стронций, барий и радий .

Физические свойства

Все щёлочноземельные металлы - серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение - стронций). Плотность щёлочноземельных металлов с порядковым номером растёт, хотя явно рост наблюдается только начиная с кальция, который имеет минимальную среди них плотность (ρ = 1,55 г/см³), самый тяжёлый - радий, плотность которого примерно равна плотности железа.

Химические свойства

Щёлочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns ², и являются s-элементами, наряду с щелочными металлами. Имея два валентных электрона, щёлочноземельные металлы легко их отдают, и во всех соединениях имеют степень окисления +2 (очень редко +1).

Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. Бериллий в компактном виде не реагирует ни с кислородом, ни с галогенамидаже при температуре красного каления (до 600 °C, для реакции с кислородом и другими халькогенами нужна ещё более высокая температура, фтор - исключение). Магний защищён оксидной плёнкой при комнатной температуре и более высоких (до 650 °C) температурах и не окисляется дальше. Кальций медленно окисляется и при комнатной температуре вглубь (в присутствии водяных паров), и сгорает при небольшом нагревании в кислороде, но устойчив в сухом воздухе при комнатной температуре. Стронций, барий и радий быстро окисляются на воздухе, давая смесь оксидов и нитридов, поэтому их, так же и как щелочные металлы (и кальций), хранят под слоем керосина.

Оксиды и гидроксиды щёлочноземельных металлов имеют тенденцию к усилению основных свойств с ростом порядкового номера: Be(OH) 2 - амфотерный, нерастворимый в воде гидроксид, но растворим в кислотах (а также проявляет кислотные свойства в присутствии сильных щелочей), Mg(OH) 2 - слабое основание, нерастворимое в воде, Ca(OH) 2 - сильное, но малорастворимое в воде основание, Sr(OH) 2 - лучше растворимо в воде, чем гидроксид кальция, сильное основание (щёлочь) при высоких температурах, близких к точке кипения воды (100 °C), Ba(OH) 2 - сильное основание (щёлочь), по силе не уступающее KOH или NaOH, иRa(OH) 2 - одна из сильнейших щелочей, очень коррозионное вещество

Нахождение в природе

Все щёлочноземельные металлы имеются (в разных количествах) в природе. Ввиду своей высокой химической активности все они в свободном состоянии не встречаются. Самым распространённым щёлочноземельным металлом является кальций, количество которого равно 3,38 % (от массы земной коры). Немногим ему уступает магний, количество которого равно 2,35 % (от массы земной коры). Распространены в природе также барий и стронций, которых соответственно 0,05 и 0,034 % от массы земной коры. Бериллий является редким элементом, количество которого составляет 6·10 −4 % от массы земной коры. Что касается радия, который радиоактивен, то это самый редкий из всех щёлочноземельных металлов, но он в небольшом количестве всегда содержится в урановых рудах. В частности, он может быть выделен оттуда химическим путём. Его содержание равно 1·10 −10 % (от массы земной коры)

Алюминий.

Алюми́ний - элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 13. Обозначается символом Al (лат. Aluminium ). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- иэлектропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Впервые алюминий был получен датским физиком Гансом Эрстедом в 1825 году действием амальгамы калия нахлорид алюминия с последующей отгонкой ртути.Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 6 с последующим электролизом с использованием расходуемых коксовых или графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Для производства 1000 кг чернового алюминия требуется 1920 кг глинозёма, 65 кг криолита, 35 кг фторида алюминия, 600 кг анодной массы и 17 тыс. кВт·ч электроэнергии постоянного тока

Щелочные металлы - франций, цезий, рубидий, калий, натрий, литий - называются так из-за того, что образуют щелочи при взаимодействии с водой. Из-за высокой способности вступать в реакцию эти элементы следует хранить под слоем минерального масла или керосина. Самым активным из всех указанных веществ считается франций (обладает радиоактивностью).

Щелочные металлы - вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском. Щелочные металлы кипят и плавятся при низких температурах, обладают высокой тепло- и электропроводимостью. Они имеют также небольшую плотность.

Химические свойства щелочных металлов

Вещества являются сильными восстановителями, проявляют в соединениях степень окисления (единственную) +1. С увеличением атомной массы щелочных металлов увеличивается и восстановительная способность. Практически все соединения растворимы в воде, все они носят ионный характер.

При умеренном нагревании щелочные металлы воспламеняются на воздухе. В соединении с водородом вещества формируют солеобразные гидриды. Продуктами сгорания, как правило, являются пероксиды.

Оксидами металлов щелочных являются твердые вещества желтого (оксиды рубидия и калия), белого и лития), и оранжевого (цезия оксид) цветов. Указанные оксиды способны реагировать с водой, кислотами, кислородом, кислотными и амфотерными оксидами. Эти основные свойства присущи им всем и носят ярко выраженный характер.

Пероксиды металлов щелочных - порошки желтовато-белого цвета. Они способны вступать в реакцию с углекислыми и угарными газами, кислотами, неметаллами, водой.

Гидроксиды металлов щелочных представляют собой растворимые в воде твердые вещества белого цвета. В этих соединениях проявляются (достаточно ярко) основные свойства щелочей. От лития к францию сила оснований и степень растворимости в воде увеличиваются. Гидроксиды считаются достаточно сильными электролитами. Они вступают в реакцию с солями, и оксидами, отдельными неметаллами, За исключением соединения с литием все остальные проявляют термическую устойчивость. При прокаливании происходит его разложение на воду и оксид. Получаются указанные соединения при помощи электролиза хлоридных водных растворов, ряда обменных реакций. Гидроксиды получают также при взаимодействии элементов (или оксидов) с водой.

Практически все соли описываемых металлов (за исключением отдельных солей лития) в воде растворимы хорошо. Образованные слабыми кислотами, растворы солей имеют реакцию среды (щелочную) в связи с гидролизом, образованные же сильными кислотами соли не гидролизуются. Распространенными солями являются каменная силикатный клей (растворимое стекло), бертолетова соль, марганцовка, сода питьевая, кальцинированная сода и прочие.

Все соединения щелочных металлов обладают способностью изменять цвет пламени. Это применяют в химическом анализе. Так, пламя в окрашивается ионами лития, в фиолетовый - ионами калия, в желтый - натрия, беловато-розовый - рубидия, фиолетово-красный - цезия.

В связи с тем, что все щелочные элементы являются самыми сильными восстановителями, получить их можно путем электролиза расплавов солей.

Применение щелочных металлов

Элементы используются в разных сферах деятельности человека. Например, цезий используется в фотоэлементах. В подшипниковых сплавах в качестве катализатора применяется литий. Натрий присутствует в газоразрядных лампах, ядерных реакторах как теплоноситель. В научно-исследовательской деятельности применяется рубидий.

Специальная (коррекционная)

общеобразовательная школа – интернат для незрячих

и слабовидящих детей г. Перми

Реферат выполнили

ученики 10 класса

Пономарев Олег,

Коршунов Артем

Руководитель:

Л.Ю. Захарова ,

учитель химии

г. Пермь

Введение

Общая характеристика элементов I А-группы

4 – 10

1.1. История открытия и распространение в природе щелочных металлов

4 – 5

5 - 6

6 – 8

8 – 9

9 – 10

Биологическая роль элементов I А-группы. Их применение в медицине

11 – 17

Пути поступления щелочных металлов в организм человека

18 – 21

Практическая работа

22 – 23

Выводы

24 – 25

Используемая литература

Введение

Давно настало время, когда каждый должен задуматься сам над своим здоровьем и не только над своим. Знания, получаемые в школе, например, по химии, мы не очень часто используем в повседневной жизни. Тем не менее, именно этот предмет может стать источником знаний о нашем здоровье. Благодаря химии мы узнаем, каким образом вещества нашей планеты влияют на процессы жизнедеятельности организма, да и в целом на саму жизнь человека, что полезно нам и в каких количествах и, наконец, что вредно и до какой степени.

Организм человека – это сложная химическая система, которая не может функционировать самостоятельно, без связи с окружающей средой. Доказано, что в живом организме присутствуют почти все химические элементы: одни – являются макроэлементами, а содержание других ничтожно, это – микроэлементы. Пути поступления элементов в организм различны, разнообразно и влияние их на организм, но каждый выполняет свою биологическую роль.

В рамках одной работы невозможно изучить значение каждого элемента. Мы выбрали самую первую группу химических элементов периодической системы Д.И.Менделеева.

Цель данного исследования – изучить биологическую роль щелочных металлов для человеческого организма.

В этой связи мы решили выяснить следующие вопросы для каждого металла IА группы:

    общая характеристика и особенности строения атомов каждого элемента, а также свойства образуемых ими веществ;

    нахождение элемента в организме;

    потребности организма в нем;

    влияние избытка и недостатка элемента на здоровье человека;

    природные источники;

    способы обнаружения элемента.

1. Общая характеристика элементов I А-группы

Период

Группа

В I А-группу входят s -элементы - щелочные металлы, исключительно важные для нормальной жизни животных и людей. Наибольшее значение для организмов имеют макроэлементы натрий и калий.

3 Li

11 Na

19 K

37 Rb

55 Cs

87 Fr

1.1. История открытия и распространение в природе

щелочных металлов

Название «щелочные металлы» связано с тем, что гидроксиды двух главных представителей этой группы – натрия и калия – издавна были известны под названием щелочей. Из этих щелочей, подвергая их в расплавленном состоянии электролизу, Г.Дэви в 1807г. впервые получил свободные калий и натрий. Й.Берцелиус предложил назвать элемент №11 натрием (от арабского натрун – сода), а элемент №19 по предложению Гильберта получил название калий (от арабского алкали – щелочь).

Остальные металлы выделены учеными из соединений позже. Литий был открыт шведским химиком И.Арфведсоном в 1817г., и по предложению Й.Берцелиуса назван литием (о греческого литос – камень), т.к. в отличие от калия, который до тех пор находили только в золе растений, он был обнаружен в камне.

Рубидий выделили в 1861г., цезий – в 1860г. Франций получен искусственно в 1939г. французской исследовательницей М.Пере при распаде актиния, является радиоактивным элементом.

Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений. Некоторые их природные соединения, в частности соли натрия и калия, довольно широко распространены, они содержатся во многих минералах, растениях, природных водах.

Натрий и калий принадлежат к распространенным элементам: содержание каждого из них в земной коре равно приблизительно 2% по массе. Оба металла входят в состав различных минералов и норных пород силикатного типа.

Хлорид натрия NaCl содержится в морской воде, а также образует мощные отложения каменной соли во многих местах земного шара. В верхних слоях этих отложений иногда содержатся довольно значительные количества калия, преимущественно в виде хлорида KCl или двойных солей с натрием и магнием KCl ∙MgCl 2 . Однако большие скопления солей калия, имеющие промышленное значение, встречаются редко. Наиболее важными из них являются соликамские месторождения (сильвинит) в России, страссфуртские – в Германии и эльзаские – во Франции.

Залежи натриевой селитры NaNO 3 находятся в Чили. В воде многих озер содержится сода Na 2 CO 3 . Наконец, огромные количества сульфата натрия Na 2 SO 4 находятся в заливе Кара-Богаз-Гол Каспийского моря, где эта соль в зимние месяцы толстым слоем осаждается на дне.

Значительно меньше, чем натрий и калий, распространены литий, рубидий и цезий. Чаще других встречается литий, но содержащие его минералы редко образуют большие скопления. Рубидий и цезий содержатся в небольших количествах в некоторых литиевых минералах.

Франций в природе встречается в ничтожных количествах (на всем земном шаре его едва ли найдется 500г), получается искусственно.

1.2. Строение и свойства атомов щелочных металлов

Электронная формула валентной оболочки атомов щелочных металлов ns 1 , т.е. атомы этих элементов имеют по одному валентному электрону на s -подуровне внешнего энергетического уровня. Соответственно, устойчивая степень окисления щелочных металлов равна +1.

Все элементы IA -группы очень сходны по свойствам, что объясняется однотипным строением не только валентной электронной оболочки, но и предвнешней (за исключением лития).

С ростом радиуса атома в группе Li – Na – K – Rb – Cs – Fr ослабевает связь валентного электрона с ядром. Соответственно, в этом ряду энергия ионизации атомов щелочных металлов уменьшается.

Имея на валентных оболочках один электрон, расположенный на большом расстоянии от ядра, атомы щелочных металлов легко отдают электрон. Это обусловливает низкую энергию ионизации. В результате ионизации образуются катионы Э + , имеющие устойчивую электронную конфигурацию атомов благородных газов.

В таблице представлены некоторые свойства атомов щелочных металлов.

Характеристика

3 Li

11 Na

1 9 K

37 Rb

55 Cs

87 Fr

Валентные электроны

2s 1

3s 1

4s 1

5s 1

6s 1

7s 1

Молярная масса, г/моль

23,0

39,1

85,5

132,9

Металлический радиус атома, пм

Кристаллический радиус атома, пм

Энергия ионизации,

кДж/моль

Щелочные металлы – наиболее типичные представители металлов: металлические свойства выражены у них особенно ярко.

1.3. Щелочные металлы – простые вещества

Серебристо-белые мягкие вещества (режутся ножом), с характерным блеском на свежесрезанной поверхности. На воздухе блестящая поверхность металла сейчас же тускнеет вследствие окисления.

Все они легкие и легкоплавкие, причем, как правило, плотность их возрастает от Li к Cs , а температура плавления, наоборот, уменьшается.

Характеристика

Li

Na

K

Rb

Cs

Fr

Плотность, г/см 3

0,53

0,97

0,86

1,53

Твердость (алмаз = 10)

Электропроводность (Hg = 1)

11,2

13,6

Температура плавления, C

Температура кипения, C

1350

Стандартный электродный потенциал, В

3,05

2,71

2,92

2,93

2,92

Координационное число

4, 6

4, 6

6, 8

Все щелочные металлы имеют отрицательные стандартные окислительно-восстановительные потенциалы, большие по абсолютной величине. Это характеризует их как очень сильные восстановители. Лишь литий несколько уступает многим металлам по химической активности.

Несмотря на общность свойств, натрий и в особенности литий отличаются от других щелочных металлов. Последнее, прежде всего, обусловлено существенным различием радиусов их атомов и строения электронных оболочек.

Щелочные металлы относятся к числу наиболее активных в химическом отношении элементов. Химическая активность щелочных металлов закономерно увеличивается с ростом радиуса атомов.

Li Na K Rb Cs Fr

Увеличивается химическая активность,

Увеличивается радиус атома

Щелочные металлы активно взаимодействуют почти со всеми неметаллами.

При взаимодействии с кислородом литий образует оксид Li 2 O , а остальные щелочные металлы - пероксиды Na 2 O 2 и надпероксиды KO 2 , RbO 2 , CsO 2 . Например:

4Li (т) + O 2 (г) = 2Li 2 О(т)

2Na (т) + O 2 (г) = Na 2 O 2 (т)

K (т) + O 2 (г) = KO 2 (т)

Активно взаимодействуют щелочные металлы с галогенами , образуя галогениды ЭГ; с серой - с образованием сульфидов Э 2 S . Непосредственно с азотом щелочные металлы, за исключением лития, не реагируют.

2Э(т) + Cl 2 (г) = 2ЭCl (т)

2Э(т) + S (т) = Э 2 S (т)

Все щелочные металлы непосредственно взаимодействуют с водой , образуя гидроксиды ЭОН – щелочи и восстанавливая воду до водорода:

2Э (т) + 2Н 2 О(ж) = 2ЭОН(р) + Н 2 (г)

Интенсивность взаимодействия с водой значительно увеличивается в ряду Li - Cs .

Восстановительная способность щелочных металлов настолько велика, что они могут даже восстанавливать атомы водорода, превращая их в отрицательно заряженные ионы Н - . Так, при нагревании щелочных металлов в струе водорода получаются их гидриды, например:

2Э(т) + Н 2 (г) = 2ЭН

1.4. Применение щелочных металлов

Щелочные металлы и их соединения широко используются в технике.

Литий применяется в ядерной энергетике. В частности изотоп 6 Li служит промышленным источником для производства трития, а изотоп 7 Li используется как теплоноситель в урановых реакторах. Благодаря способности лития легко соединяться с водородом, азотом, кислородом, серой, он применяется в металлургии для удаления следов этих элементов из металлов и сплавов.

Используется литий и его соединения и в качестве топлива для ракет. Смазки, содержащие соединения лития, сохраняют свои свойства в широком интервале температур. Применяется литий в керамической, стекольной и других отраслях химической промышленности. Вообще, по значимости в современной технике этот металл является одним из важнейших редких элементов.

Цезий и рубидий применяются для изготовления фотоэлементов. В этих приборах, преобразующих лучистую энергию в энергию электрического тока и основанных на явлении фотоэффекта, используется способность атомов цезия и рубидия отщеплять валентные электроны при действии на металл лучистой энергии.

Важнейшие области применения натрия – это атомная энергетика, металлургия, промышленность органического синтеза.

В атомной энергетике натрий и его сплав с калием применяется в качестве жидкометаллических теплоносителей. Сплав натрия с калием, содержащий 77,2% калия, находится в жидком состоянии в широком интервале температур, имеет высокий коэффициент теплопередачи и не взаимодействует с большинством конструкционных материалов.

В металлургии натрийтермическим методом получают ряд тугоплавких металлов. Кроме того, натрий используется как добавка, упрочняющая свинцовые сплавы.

В промышленности органического синтеза натрий используется при получении многих веществ. Он служит также катализатором при получении некоторых органических полимеров.

Калий принадлежит к числу элементов, необходимых в значительном количестве для питания растений. Хотя в почве находится довольно много солей калия, но и уносится его с некоторыми культурными растениями также очень много. Особенно много калия уносит лен, конопля и табак. Для пополнения убыли калия из почвы, необходимо вносить в почву калийные удобрения.

1.5. Соединения щелочных металлов

Оксиды Э 2 О – твердые вещества. Имеют ярко выраженные основные свойства: взаимодействуют с водой, кислотами и кислотными оксидами. например:

Э 2 О(т) + Н 2 О(ж) = 2ЭОН (р)

Пероксиды и надпероксиды Э 2 О 2 и ЭО 2 щелочных металлов - сильные окислители. Натрий пероксид и калий надпероксид применяют в замкнутых объектах (подводных лодках, космических кораблях) для поглощения углекислого газа и регенерации кислорода:

2Na 2 O 2 (т) + 2CO 2 (г) = 2Na 2 CO 3 (т) + O 2 (г)

4KO 2 (т) + 2СO 2 (г) = 2K 2 CO 3 (т) + 3O 2 (г)

Пероксид натрия применяется также для отбеливания тканей, шерсти, шелка и т.п.

Щелочи – твердые, белые, очень гигроскопичные кристаллические вещества, относительно легкоплавки и хорошо растворимы в воде (за исключением LiOH ). Твердые щелочи и их концентрированные растворы разъедающие действуют на ткани, бумагу и живые ткани вследствие обезвоживания и щелочного гидролиза белков. Поэтому работа с ними требует защитных мер предосторожности. Ввиду сильного разъедающего действия, эти щелочи называют едкими (NaOH – едкий натр, каустик, КОН – едкое кали).

Щелочи хорошо растворяются в воде с выделением большого количества теплоты, проявляют ярко выраженные свойства сильных растворимых оснований: взаимодействуют с кислотами, кислотными оксидами, солями, амфотерными оксидами и гидроксидами.

Едкий натр применяется в больших количествах для очистки нефтепродуктов. в бумажной и текстильной промышленности, для производства мыла и волокон.

Едкое кали дороже и применяется реже. Основная область его применения – производство жидкого мыла.

Соли щелочных металлов – твердые кристаллические вещества ионного строения. Наиболее важные из них – карбонаты, сульфаты, хлориды.

Большинство солей щелочных металлов хорошо растворимы в воде (за исключением солей лития: Li 2 CO 3 , LiF , Li 3 РО 4).

С многоосновными кислотами щелочные металлы образуют как средние (Э 2 SO 4 , Э 3 РО 4 , Э 2 СО 3 , Э 2 SO 3 и др.), так и кислые (ЭНSO 4 , ЭН 2 РО 4 , Э 2 НРО 4 , ЭНСО 3 и т.д.) соли.

Na 2 CO 3 - карбонат натрия, образует кристаллогидрат Na 2 CO 3 ∙10H 2 CO 3 , известный под названием кристаллическая сода, которая применяется в производстве стекла, бумаги, мыла. Это средняя соль.

В быту более известна кислая соль – гидрокарбонат натрия NaHCO 3 , она применяется в пищевой промышленности (пищевая сода) и в медицине (питьевая сода).

К 2 СО 3 – карбонат калия, техническое название – поташ, используется в производстве жидкого мыла и для приготовления тугоплавкого стекла, а также в качестве удобрения.

Na 2 SO 4 ∙10Н 2 О – кристаллогидрат сульфата натрия, техническое название глауберова соль, применяется для производства соды и стекла, а также в качестве слабительного средства.

NaCl – хлорид натрия, или поваренная соль, является важнейшим сырьем в химической промышленности, широко применяется в быту.

2. Биологическая роль s -элементов IA -группы. Их применение в медицине

Химический элемент, Э

10 -4 %

0,08%

0,23%

10 -5 %

10 -4 %

Щелочные металлы в виде различных соединений входят в состав тканей человека и животных.

Натрий и калий относятся к жизненно необходимым элементам, постоянно содержатся в организме, участвуют в обмене веществ. Литий, рубидий и цезий так же постоянно содержатся в организме, однако физиологическая и биохимическая роль их мало выяснена. Их можно отнести к примесным микроэлементам.

В организме человеке щелочные металлы находятся в виде катиона Э + .

Сходство электронного строения ионов щелочных металлов, а, следовательно, и физико-химических свойств соединений определяет и близость их действия на биологические процессы. Различия в электронной структуре обусловливают их разную биологическую роль. На этой основе можно прогнозировать поведение щелочных металлов в живых организмах.

Так, натрий и литий накапливаются во внеклеточной жидкости, а калий, рубидий и цезий - во внутриклеточной. Литий и натрий особенно близки по биологическому действию. Например, они очень похожи по ферментоактивирующим свойствам.

Близость свойств натрия и лития обусловливает их взаимозамещаемость в организме. В связи с этим при избыточном введении ионов натрия или лития в организм они способны эквивалентно замещать друг друга. На этом основано введение хлорида натрия при отравление солями лития. В соответствии с принципом Ле Шателье равновесие между ионами натрия и лития в организме сдвигается в направлении выведения ионов Li + , что приводит к снижению его концентрации и достижению лечебного эффекта.

Рубидий и цезий близки по физико-химическим свойствам к иону калия, поэтому в живых организмах они ведут себя сходным образом. В изученных системах калий, рубидий и цезий являются синергистами, а с литием - антагонистами. На сходстве рубидия и калия основано введение в организм солей калия при отравлении солями рубидия.

Натрий и калий, как правило, являются антагонистами, но в ряде случаев близость многих физико-химических свойств обусловливает их взаимозамещение в живых организмах. Так, например, при увеличении количества натрия в организме усиливается выведение калия почками, т. е. наступает гипокалиемия.

Литий. Содержание лития в организме человека около 70 мг (10 ммоль). Литий является одним из ценнейших микроэлементов, или, как о нем еще говорят, мини-металлов. Когда-то литием лечили подагру и экзему. А в 1971г. в журнале «Медицинские новости» появилось интересное сообщение: в тех местностях, где в питьевой воде содержится большое количество лития, люди добрее и спокойнее, среди них меньше грубиянов и скандалистов, значительно меньше психических заболеваний. Были выявлены психотропные свойства этого металла. Литий начали применять при депрессии, ипохондрии, при агрессивности и даже наркомании.

Однако литий может быть как «добрым», так и «злым». Бывали случаи, когда при инъекционном лечении литием, проходило мощное нарушение обмена веществ, и серьезные последствия этого неизбежны.

Соединения лития у высших животных концентрируются в печени, почках, селезенке, легких, крови, молоке. Максимальное количество лития найдено в мышцах человека. Биологическая роль лития как микроэлемента пока до конца не выяснена.

Доказано, что на уровне клеточных мембран ионы лития конкурируют с ионами натрия при проникновении в клетки. Очевидно, замещение ионов натрия в клетках ионами лития связано с большей ковалентностью соединений лития, вследствие чего они лучше растворяются в фосфолипидах.

Установлено, что некоторые соединения лития оказывают положительное влияние на больных маниакальной депрессией. Всасываясь из желудочно-кишечного тракта, ионы лития накапливаются в крови. Когда концентрация ионов лития достигает 0,6 ммоль/л и выше, происходит снижение эмоциональной напряженности и ослабление маниакального возбуждения. Вместе с тем содержание ионов лития в плазме крови нужно строго контролировать. В тех случаях, когда концентрация ионов лития превышает 1,6 ммоль/л, возможны отрицательные явления.

Сейчас известно, что кроме психотропного действия, литий обладает свойствами предупреждать склероз, болезни сердца, в какой-то степени диабет и гипертонию. Он «помогает» магнию в его антисклеротической защите.

В конце 1977г. были опубликованы результаты исследований, проведенных в краковской гематологической клинике. Исследования были посвящены вопросам влияния лития на кроветворную систему. Оказалось, что этот микроэлемент активизирует действие еще не погибших клеток костного мозга. Сделанное открытие может сыграть важную роль в борьбе с раком крови. Исследования еще продолжаются. Хочется верить, что их результаты принесут людям неоценимую помощь.

Натрий. Содержание натрия в организме человека массой 70кг составляет около 60г (2610 ммоль). Из этого количества 44% натрия находится во внеклеточной жидкости и 9%- во внутриклеточной.

Остальное количество натрия находится в костной ткани, являющейся местом депонирования иона Na + в организме. Около 40% натрия, содержащегося в костной ткани, участвует в обменных процессах и благодаря этому, скелет является либо донором, либо акцептором ионов натрия, что способствует поддержанию постоянства концентрации ионов натрия во внеклеточной жидкости.

Натрий является основным внеклеточным ионом. В организме человека находится натрий в виде его растворимых солей, главным образом хлорида NaCl, фосфата Na 3 PO 4 и гидрокарбоната NaHCO 3 .

Натрий распределен по всему организму: в сыворотке крови, спинномозговой жидкости, глазной жидкости, пищеварительных соках, желчи, почках, коже, костной ткани, легких, мозге.

Ионы натрия играют важную роль в обеспечении постоянства внутренней среды человеческого организма, участвует в поддержании постоянного осмотического давления биожидкости, обеспечивает кислотно-щелочное равновесие организма. ионы натрия участвуют в регуляции ионного обмена и влияют на работу ферментов. Вместе с ионами калия, магния, кальция, хлора ион натрия участвует в передаче нервных импульсов через мембраны нервных клеток и поддерживает нормальную возбудимость мышечных клеток.

При изменении содержания натрия в организме происходят нарушения функций нервной, сердечно-сосудистой и других систем, гладких и скелетных мышц. Хлорид натрия NaCl служит основным источником соляной кислоты для желудочного сока.

В организм человека натрий поступает в основном в виде поваренной соли NaCl. Истинная ежедневная потребность организма в натрии составляет 1г, хотя среднее потребление этого элемента достигает 4 - 7г.

Непрерывное избыточное потребление NaCI способствуют появлению гипертонии. В организме здорового человека поддерживается равновесие между количеству потребляемого и выделяемого натрия. Около 90% потребляемого натрия выводится с мочой, а остальные - с потом и калом.

Итак, подведем итог: ионы натрия играют важную роль:

    в обеспечение осмотического гомеостаза

    в обеспечение кислотно-основного равновесия организма

    в регулировании водного обмена

    в работе ферментов

    в передаче нервных импульсов

    в работе мышечных клеток

Изотонический раствор NaCI (0,9%) для инъекций вводят подкожно, внутривенно и в клизмах при обезвоживании организма и при интоксикациях, а также применяют для промывания ран, глаз, слизистой оболочки носа, а также для растворения различных лекарственных препаратов.

Гипертонические растворы NaCI (3-5-10%) применяют наружно в виде компрессов и примочек при лечении гнойных ран. Применение таких компрессов способствует по законом осмоса отделению гноя из ран и плазмолизу бактерий (антимикробное дейстие). 2-5%-ный раствор NaCI назначают внутрь для промывания желудка при отравлении AgNO 3 , который при этом превращается в малорастворимый и нетоксичный хлорид серебра:

Ag + + CI - = AgCI (т)

Сода питьевая (натрий гидрокарбонат, сода двууглекислая) NaHCO 3 используется при различных заболеваниях, сопровождающихся повышенной кислотностью - ацидозом (диабет и др.). Механизм снижения кислотности заключается во взаимодействии NaHCO 3 с кислыми продуктами. При этом образуются натриевые соли органических кислот, которые в значительной мере выводятся с мочой, и углекислый газ, покидающий организм с выдыхаемым воздухом:

NaHCO 3 (p) + RCOOH (p) → RCOONa(p) + H 2 O(ж) + CO 2 (г)

Используют NaHCO 3 и при повышенной кислотности желудочного сока, язвенной болезни желудка и двенадцатиперстной кишки. При приеме NaHCO 3 протекает реакция нейтрализации избыточной соляной кислоты:

NaHCO 3 (р) + HCl (р) = NaCl (р) + H 2 O (ж) + CO 2 (г)

Следует иметь в виду, что применение питьевой соды должно быть осторожным, т.к. может вызвать ряд побочных эффектов.

Растворы питьевой соды применяют в виде полосканий, промываний при воспалительных заболеваниях глаз, слизистых оболочек верхних дыхательных путей. Действие NaHCO 3 в качестве антисептического средства основано на том, что в результате гидролиза водный раствор соды проявляет слабощелочные свойства:

NaHCO 3 + H 2 O ↔ NaOH + H 2 CO 3

При воздействии щелочей на микробные клетки происходит осаждение клеточных белков и вследствие этого гибель микроорганизмов.

Глауберова соль (сульфат натрия) Na 2 SO 4 ∙10H 2 O применяют в качестве слабительного средства. Эта соль медленно всасывается из кишечника, что приводит к поддержанию повышенного осмотического давления в полости кишечника в течение длительного времени. В результате осмоса происходит накопление воды в кишечнике, содержимое его разжижается, сокращения кишечника усиливаются, и каловые массы быстрее выводятся.

Бура (тетраборат натрия) Na 2 B 4 O 7 ∙10H 2 O применяют наружно как антисептическое средство для полосканий, спринцеваний, смазываний. антисептическое действие буры аналогично действию питьевой соды и связано с щелочной реакцией среды водного раствора этой соли, а также с образованием борной кислоты:

Na 2 B 4 O 7 + 7H 2 O ↔ 4H 3 BO 3 + 2NaOH

Гидроксид натрия в виде 10%-ного раствора NaOH входит в состав силамина, применяемого в ортопедической практике для отливки огнеупорных моделей при изготовлении цельнолитых протезов из кобальтохромового сплава.

Радиоактивны изотоп 24 Na в качестве метки применяют для определения скорости кровотока, кроме того, он используется для лечения некоторых форм лейкемии.

Калий. C одержание калия в организме человека массой 70кг составляет примерно 160г (4090 ммоль). Калий является основным внутриклеточным катионом, составляя 2/3 от общего количества активных клеточных катионов. В большинстве случаев калий является антагонистом натрия.

Из общего количества калия, содержащегося в организме, 98% находится внутри клеток и лишь около 2% - во внеклеточной жидкости. Калий распространен по всему организму. Его топография: печень, почки, сердце, костная ткань, мышцы, кровь, мозг и т.д.

Ионы калия К + играют важную роль в физиологических процессах:

    сокращение мышц

    в нормальном функционировании сердца

    участвует в передаче нервных импульсов

    в обменных реакциях

    активизирует работу ряда ферментов, находящихся внутри клетки

    регулирует кислотно-щелочное равновесие

    Обладает защитными свойствами против нежелательного действия избытка натрия и нормализует давление крови. В организме людей, употребляющих в пищу много богатых калием овощей, – вегетарианцев – количество калия и натрия находятся в равновесии. Эти люди чаще всего имеют более низкие показатели кровяного давления, нежели их сограждане, увлекающиеся мясом.

    Оказывает противосклеротическое действие

    Калий обладает способностью усиливать образование мочи

Взрослый человек обычно потребляет с пищей 2 – 3 г калия в сутки. Концентрация ионов калия во внеклеточной жидкости, включая плазму, составляет в норме 3,5 – 5,5 ммоль/л, а концентрация внутриклеточноко калия – 115 – 125 ммоль/л.

Рубидий и цезий. По содержанию в организме человека рубидий и цезий относятся к микроэлементам. Они постоянно содержатся в организме, но биологическая роль их еще не выяснена.

Рубидий и цезий найдены во всех исследованных органах млекопитающих и человека. Поступая в организм с пищей, они быстро всасываются из желудочно-кишечного тракта в кровь. Средний уровень рубидия в крови составляет 2,3-2,7 мг/л, причем его концентрация в эритроцитах почти в три раза выше, чем в плазме. Рубидий и цезий весьма равномерно распределяется в органах и тканях, причем, рубидий, в основном, накапливается в мышцах, а цезий поступает в кишечник и вновь реабсорбируется в нисходящих его отделах.

Известна роль рубидия и цезия в некоторых физиологических процессах. В настоящее время установлено стимулирующее влияние этих элементов на функции кровообращения и эффективность применения их солей при гипотониях различного происхождения. В лаборатории И.П.Павлова С.С.Боткиным было установлено, что хлориды цезия и рубидия вызывают повышение артериального давления на длительное время и, что это действие связано, главным образом, с усилением сердечно-сосудистой деятельности и сужением периферических сосудов.

Являясь полным аналогом калия, рубидий также накапливается во внутриклеточной жидкости и может в различных процессах замещать эквивалентное количество калия. Синергизм (хим.) – одновременное комбинированное воздействие двух (или более) факторов, характеризующихся тем, что такое совместное действие значительно превосходит эффект каждого отдельно взятого компонента. Синергист калия – рубидий активирует многие те же самые ферменты, что и калий.

Радиоактивные изотопы 137 Cs и 87 Rb используют в радиотерапии злокачественных опухолей, а также при изучении метаболизма калия. Благодаря быстрому распаду их можно даже вводить в организм, не опасаясь длительного вредного воздействия.

Франций. Это радиоактивный химический элемент, полученный искусственным путем. Имеются данные, что франций способен избирательно накапливаться в опухолях на самых ранних стадиях их развития. Эти наблюдения могут оказаться полезными при диагностике онкологических заболеваний.

Таким образом, из элементов IA -группы физиологически активны Li , Rb , Cs , а Na и K – жизненно необходимы. Близость физико-химических свойств Li и Na , обусловленная сходством электронного строения их атомов, проявляется и в биологическом действии катионов (накопление во внеклеточной жидкости, взаимозамещаемость). Аналогичный характер биологического действия катионов элементов больших периодов – K + , Rb + , Cs + (накопление во внутриклеточной жидкости, взаимозамещаемость) также обусловлена сходством их электронного строения и физико-химических свойств. На этом основано применение препаратов натрия и калия при отравлении солями лития и рубидия.

3. Пути поступления щелочных металлов

в организм человека

Пути поступления химических элементов в организм человека разнообразны, они представлены на схеме:

человек

В процессе эволюции от неорганических веществ к биоорганическим основой использования тех или иных химических элементов при создании биосистем является естественный отбор.

В таблице приведены данные о содержании элементов I А группы – щелочных металлов – в земной коре, морской воде, растительных, животных организмах и в организме человека (массовая доля в %).

Из таблицы видно, что чем больше распространенность элемента в земной коре, тем больше его и в организме человека.

Li

Na

K

Rb

Cs

Земная кора

6,5∙10 -3

0,03

точных данных

нет

Почва

3∙10 -3

0,63

1,36

5∙10 -3

Морская вода

1,5∙10 -5

1,06

0,038

2∙10 -5

Растения

1∙10 -5

0,02

5∙10 -4

Животные

10 -4

0,27

10 -5

Человек

10 -4

0,08

0,23

10 -5

10 -4

Наиболее необходимые для организма человека щелочные металлы – это натрий и калий. В организм человека почти все элементы, в основном, поступают с пищей.

Источники лития.

Литий содержится в некоторых минеральных водах, а также в морской и каменной соли. Содержится он и в растениях, но концентрация его, как и любых микроэлементов, зависит не только от вида и части растения, но и от времени года и даже суток, от условий сбора и погоды, а также от местности, где растет это растение.

В нашей стране литий исследовали сотрудники Института геохимии имени акад. В. И. Вернадского в Москве. Было установлено, что наземные части растений богаче литием, чем корни. Больше всего лития в растениях семейства розовых, гвоздичных, пасленовых, к которым относятся помидоры и картофель. Хотя в рамках одного семейства разница в его содержании может быть огромной - в несколько десятков раз. Зависит это от географического положения и содержания лития в почве.

Источники натрия.

Натрий присутствует в различных пищевых добавках в виде глутамата натрия (ароматизатора), сахарина натрия (подсластитель), нитрата натрия (консервант), аскорбат натрия (антиоксидант) и бикарбоната натрия (пищевая сода) а так же в некоторых лекарственных средствах (антациды). Однако большинство натрия в рационе содержится в соли.
Уровень NaCl относительно мал во всех пищевых продуктах, которые не подвергались специальной обработке. Тем не менее, соль применяется как консервант и ароматизатор в течение нескольких столетий. Она так же используется как крaситель, наполнитель и с целью контроля над процессом брожения (например при выпечке хлеба). По этой причине она добавляется в такие пищевые продукты как ветчина, сосиски, бекон и другие мясные продукты, копченую рыбу и мясо, консервированные овощи, большинство сортов масла, маргарин, cыр, несладкие пищевые продукты, закуски и в хлебные злаки, которые мы едим на завтрак.

Рекомендованная норма натрия составляет 1,5 грамма в день. Избыток соли в рационе ассоциирован с повышением вероятности возникновения рака желудка и вреден для почек, особенно в том случае, если в них есть какие либо нарушения мочевыделительной системы. Избыток соли - один из ведущих факторов образа жизни, который приводит к гипертонии. В том случае, если гипертония протекает малосимптомно, она повышает риск сердечно-сосудистых заболеваний и инсульта. Современные рекомендации по профилактике гипертонии показали, что наиболее эффективная диета для профилактики и лечения повышенного кровяного давления должна содержать минимум натрия и жиров и включать большие количества нежирных молочных продуктов (источник кальция), фрукты и овощи (источник калия). Таким образом, важно изменить диету в целом, а не сосредотачиваться на каком либо её компоненте. К другим важным позитивным факторам относится физическая активность, нормальный вес тела.
Люди, страдающие от заболеваний почек, и очень маленькие дети не могут переносить потребление больших количеств натрия, потому что их почки не справляются с его выведением. По этой причине не стоит присаливать пищу детям младшего возраста.

По закону на этикетках пищевых продуктов должно указываться содержание натрия, но некоторые производители пренебрегают этим правилом и указывают количество соли.

Помним: «Поваренная соль может насолить нашему здоровью

Источники калия.

Лучший источник калия – растительная пища. Это – арбузы, дыни, апельсины, мандарины, бананы, сухофрукты (инжир, абрикосы, шиповник). Богаты калием ягоды – брусника, земляника, черная и красная смородина. Много калия и в овощах (особенно в картофеле), бобовых, изделиях из муки грубого помола, рисе.

Реакция организма на недостаток калия.

При недостатке калия в организме наблюдаются мышечная слабость, вялость кишечника, нарушения сердечной деятельности.

«Еще не встала – уже устала» - так образно и доступно характеризют дефицит калия в организме доктора. Пониженное содержание калия в организме обычно приводит к астении (психическому и физическому истощению, быстрой утомляемости), нарушению функции почек и истощению функции коры надпочечников. Существует риск нарушения обменных процессов и проводимости в миокарде.

Дефицит калия снижает работоспособность, замедляет заживления ран, ведёт к нарушению нервно-мышечной проводимости. Отмечается сухость кожных покровов, тусклость и слабость волос (это является предметом серьёзных переживаний особенно для женщин и девушек).

Может наступить внезапная смерть при увеличении нагрузок. Наблюдается плохая передача нервных импульсов. Снижают усвоение калия мочегонные средства (диуретики). При приготовлении пищи необходимо обращать внимание на то, что соединения калия водорастворимы. Это обстоятельство обязывает мыть продукты, его содержащие, до их измельчения и готовить их в небольшом количестве воды.

Кстати, народная медицина считает, что страстное желание употреблять алкоголь связано с недостатком калия в организме.

При калиевом истощении применяют калия хлорид KCl 4 - 5 раз в день по 1г.

Реакция организма на избыток калия.

При избытке калия в организме угнетены основные функции сердца: уменьшение возбудимости сердечной мышцы, урежение ритма сердечных сокращений, ухудшение проводимости, ослабление силы сокращений сердца. В больших концентрациях ионы калия вызывают остановку сердца в диастоле (фаза сокращения желудочков сердца). Токсическая доза калия составляет 6 г. Летальная доза – 14 г. Соли калия могут быть токсичны для организма за счет аниона, связанного с ионом калия, это, например, KCN (цианид калия).

Чтобы регулировать содержание этих биогенных элементов, можно учитывать данные, представленные в следующей таблице.

4. Практическая часть

Опыт 1. Окрашивание пламени соединениями.

Один из способов качественного обнаружения соединений щелочных металлов основан на их способности окрашивать пламя горелки.

В пробирки нужно налить растворы солей щелочных металлов. Железную проволоку промыть в соляной кислоте, а затем прокалить в пламени горелки.

Затем необходимо смочить проволоку раствором исследуемой соли и внести ее в пламя.

Соли, содержащие катионы лития, а также сам литий окрашивают пламя в красный цвет, катионы натрия и металл натрий – в желтый , катионы калия и металл калий окрашивают пламя в фиолетовый цвет. Для лучшего наблюдения можно рассматривать цвет через синее стекло.

Таким образом были обнаружены ионы Li + , Na + и К + в растворах солей LiCl , NaCl , Na 2 CO 3 , Na 2 SO 4 , NaNO 3 , KCl , KNO 3 , K 2 CO 3 .

Опыт 2. Взаимодействие щелочных металлов с водой.

В стакан с водой внести тщательно очищенный от оксидной пленки кусочек металла. После растворения металла исследовали среду раствора с помощью фенолфталеина.

Такой опыт проведи с кусочками лития, натрия и калия. Наиболее активно шла реакция с калием, она сопровождалась горением калия, наблюдались фиолетовые искры, выделение газа. Натрий реагировал с водой, выделяя желтые искры, а реакция лития была наиболее спокойна.

Образовавшиеся растворы с фенолфталеином окрасились в малиновый цвет, что указало на присутствие в растворе щелочи.

2Li +2H 2 O = 2LiOH + H 2

2Na + 2H 2 O = 2NaOH + H 2

2K + 2H 2 O = 2KOH + H 2

Опыт 3. Гидролиз солей натрия и калия.

Характер среды растворов солей исследуется с помощью кислотно-основных индикаторов.

Универсальные индикаторные бумажки, опущенные в растворы солей щелочных металлов, образованных слабыми кислотами Na 2 CO 3 и К 2 СО 3 , окрасились в синий цвет, что говорит о щелочной реакции растворов. в растворах произошел гидролиз – взаимодействии солей с молекулами воды:

Na 2 CO 3 ↔ 2Na + + CO 3 2-

CO 3 2- + H 2 O ↔ HCO 3 - + OH -

Na 2 CO 3 + H 2 O ↔ NaHCO 3 + NaOH

Растворы солей сильных кислот NaNO 3 , KNO 3 , NaCl , KCl , LiCl показали нейтральную среду (цвет индикаторной бумажки не изменился), значит гидролиза этих солей не происходит


Выводы

Почему так важно знать содержание в организме химических элементов?

Химические элементы не синтезируются, в отличие от многих органических веществ, в организме, а поступают извне с пищей, воздухом, через кожу и слизистые. Поэтому определение химических элементов позволяет узнать о том:

    насколько Ваш организм соответствует идеалу (кстати, около 20% людей не имеют никаких отклонений и, таким образом, живут в гармонии с природой);

    правильно ли Вы питаетесь, обеспечивает ли Ваш рацион необходимый набор питательных веществ;

    наносят ли вред организму вредные привычки;

    насколько безопасна среда, в которой Вы живете; пища, которую Вы употребляете; Ваше рабочее место;

    хорошо ли функционируют Ваш желудок, кишечник, печень, почки, кожа, регулируя процессы всасывания и выведения питательных веществ;

    нет ли у Вас хронических заболеваний или предрасположенности к ним;

    правильно ли Вы лечитесь.

Какие заболевания наиболее тесно связаны с дисбалансом элементов?

В первую очередь, это:

    снижение иммунитета;

    болезни кожи, волос, ногтей;

    сколиоз, остеопороз, остеохондроз;

    гипертония;

    аллергозы, в том числе бронхиальная астма;

    диабет, ожирение;

    заболевания сердечно-сосудистой системы;

    болезни крови (анемия);

    дисбактериоз кишечника, хронические гастриты, колиты;

    бесплодие, снижение потенции у мужчин;

    нарушение роста и развития у детей.

Многолетний опыт работы врачей показывает, что более 80% населения имеют более или менее выраженный дисбаланс микроэлементов. Поэтому, если у Вас имеются какие-нибудь , вам стоит обратить на это внимание!

Многие учёные считают, что в живом организме не только присутствуют все химические элементы, но каждый из них выполняет определённую биологическую функцию.

Мы выяснили биологическую роль лишь одной группы химических элементов. Щелочные металлы – чрезвычайно важны для здоровья человека, как и большинство других. Очень важно для состояния здоровья человека соблюдение оптимальной концентрации каждого элемента: вреден как недостаток элемента, так и его избыток.

Стабильность химического состава организма является одним из важнейших и обязательных условий его нормального функционирования .

Существует ошибочное, хотя и широко распространенное, мнение о возможности коррекции дисбаланса элементного состава организма человека путем обогащения рациона питания теми или иными продуктами, содержащими необходимые минеральные элементы. Однако следует принимать во внимание то, что присутствие в пищевых продуктах и воде необходимых макро-и микроэлементов (что особенно очевидно для жителей сельских территорий) зависит в значительной степени от так называемого "локального биогеохимического круговорота" элементов, который определяет содержание макро- и микроэлементов в пищевых растениях и животных.

Дефицит или избыток тех или иных элементов в организме человека, как правило, является следствием дефицита или избытка этих элементов, проходящих по пищевой цепи: от почвы - к растениям и животным - к человеку. При развивающемся дефиците любого элемента недостаточно пищевой коррекции, даже если для этой цели используются продукты из других регионов, почвы которых обогащены необходимым микроэлементом.

Только индивидуальный подбор специальных минеральных и других препаратов, направленных на нормализацию микроэлементного баланса организма, окажет реальную и эффективную помощь при развившемся патологическом состоянии.

В заключении приведем заповеди народной и научной медицины, которые надо знать всем:

Все связано со всем.

Все должно куда-то деваться.

Природа знает лучше.

Ничто не дается даром.

Используемая литература

1. Габриелян О.С. Химия, 9 класс, Учебник для ОУ заведений. - М. «Дрофа», 2001

2. Глинка Н.Л. Общая химия, Учебное пособие для вузов. – Л. «Химия», 1983

3. Общая химия. Химия биогенных элементов. Учебник для мед. спец. вызов. Ю.А.Ершов и др. – М. «Высшая школа», 1993

4. Сычев А.П., Фадеев Г.Н. Химия металлов. Учебное пособие. – М. «Просвещение», 1984

5. MHTML. Doc ument. интегрированный урок «Щелочные металлы». Фестиваль «Открытый урок», 2003

6.

7.

Наиболее активными среди металлов являются щелочные металлы. Они активно вступают в реакции с простыми и сложными веществами.

Общие сведения

Щелочные металлы находятся в I группе периодической таблицы Менделеева. Это мягкие одновалентные металлы серо-серебристого цвета с небольшой температурой плавления и невысокой плотностью. Проявляют единственную степень окисления +1, являясь восстановителями. Электронная конфигурация - ns 1 .

Рис. 1. Натрий и литий.

Общая характеристика металлов I группы приведена в таблице.

Список щелочных металлов

Формула

Номер

Период

t° пл. , °C

t° кип. , °C

ρ, г/см 3

Активные металлы быстро реагируют с другими веществами, поэтому в природе находятся только в составе минералов.

Получение

Для получения чистого щелочного металла используется несколько способов:

    электролиз расплавов, чаще всего хлоридов или гидроксидов -

    2NaCl → 2Na + Cl 2 , 4NaOH → 4Na + 2H 2 O + O 2 ;

    прокаливание соды (карбоната натрия) с углём для получения натрия -

    Na 2 CO 3 + 2C → 2Na + 3CO;

    восстановление кальцием рубидия из хлорида при высоких температурах -

    2RbCl + Ca → 2Rb + CaCl 2 ;

  • восстановление цезия из карбоната с помощью циркония -

    2Cs 2 CO 3 + Zr → 4Cs + ZrO 2 + 2CO 2 .

Взаимодействие

Свойства щелочных металлов обусловлены их строением. Находясь в первой группе периодической таблицы, они имеют всего один валентный электрон на внешнем энергетическом уровне. Единственный электрон легко переходит к атому окислителя, что способствует быстрому вступлению в реакцию.

Металлические свойства увеличиваются в таблице сверху вниз, поэтому литий расстаётся с валентным электроном труднее, чем франций. Литий - наиболее твёрдый элемент среди всех щелочных металлов. Реакция лития с кислородом проходит только под воздействием высокой температуры. С водой литий реагирует значительно медленнее, чем остальные металлы группы.

Общие химические свойства представлены в таблице.

Реакция

Продукты

Уравнение

С кислородом

Оксид (R 2 O) образует только литий. Натрий образует смесь оксида и пероксида (R 2 O 2). Остальные металлы образуют надпероксиды (RO 2)

4Li + O 2 → 2Li 2 O;

6Na + 2O 2 → 2Na 2 O + Na 2 O 2 ;

K + O 2 → KO 2

С водородом

2Na + H 2 → 2NaH

Гидроксиды

2Na + 2H 2 O → 2NaOH + H 2

С кислотами

2Na + 2HCl → 2NaCl + H 2-

С галогенами

Галогениды

2Li + Cl 2 → 2LiCl

С азотом (реагирует только литий при комнатной температуре)

6Li + N 2 → 2Li 3 N

Сульфиды

2Na + S → Na 2 S

С углеродом (реагируют только литий и натрий)

2Li + 2C → Li 2 C 2 ;

2Na + 2C → Na 2 C 2

С фосфором

3K + P → K 3 P

С кремнием

Силициды

4Cs + Si → Cs 4 Si

С аммиаком

2Li + 2NH 3 → 2LiNH 2 + H 2

При качественной реакции имеют разный цвет пламени. Литий горит малиновым, натрий - жёлтым, цезий - розово-фиолетовым пламенем. Оксиды щелочных металлов также имеют разный цвет. Натрий становится белым, рубидий и калий - жёлтыми.

Рис. 2. Качественная реакция щелочных металлов.

Применение

Простые металлы и их соединения используются для изготовления лёгких сплавов, металлических деталей, удобрений, соды и других веществ. Рубидий и калий используются в качестве катализаторов. Пары натрия применяются в люминесцентных лампах. Не имеет практического применения только франций из-за радиоактивных свойств. Как используют элементы I группы кратко описано в таблице применения щелочных металлов.

Область применения

Применение

Химическая промышленность

Натрий ускоряет реакцию при производстве каучука;

Гидроксид калия и натрия - производство мыла;

Карбонат натрия и калия - изготовление стекла, мыла;

Гидроксид натрия - изготовление бумаги, мыла, ткани;

Нитрат калия - производство удобрений

Пищевая промышленность

Хлорид натрия - поваренная соль;

Гидрокарбонат натрия - питьевая сода

Металлургия

Калий и натрий являются восстановителями при получении титана, циркония, урана

Энергетика

Расплавы калия и натрия используются в атомных реакторах и авиационных двигателях;

Литий используется для производства аккумуляторов

Электроника

Цезий - производство фотоэлементов

Авиация и космонавтика

Сплавы из алюминия и лития используются для корпусов машин и ракет

Рис. 3. Питьевая сода.

Что мы узнали?

Из урока 9 класса узнали об особенностях щелочных металлов. Они находятся в I группе таблицы Менделеева и при реакциях отдают один валентный электрон. Это мягкие металлы, легко вступающие в химические реакции с простыми и сложными веществами - галогенами, неметаллами, кислотами, водой. В природе встречаются только в составе других веществ, поэтому для их извлечения используется электролиз или реакция восстановления. Применяются в промышленности, строительстве, металлургии, энергетике.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 91.

Похожие публикации