Устройство и технические характеристики цифровых слуховых аппаратов. Характеристики слуховых аппаратов. Автоматическая регулировка усиления

Или глухотой, слуховые аппараты являются шансом вновь почувствовать себя полноценными, воспринимая окружающие звуки. Данные устройства подбираются индивидуально врачом-сурдологом, одной консультации продавца здесь будет недостаточно.

Самое главное на начальном этапе - понять, какие бывают слуховые аппараты, рассмотреть особенности их видов и цены на них. Далее нужно определиться с мощностью прибора, понять есть ли у него возможность усиления звука, подробно остановиться на его характеристиках, ознакомиться с отзывами. Если устройство неграмотно подобрано, оно не только не даст возможность хорошо слышать, но и усугубит уже существующие сложности со слухом.

Слуховой аппарат представляет собой специальное устройство, способное усиливать звуки окружающего мира . Основной функцией прибора является преобразование сигнала, который идет от источника, так, чтобы он мог восприниматься плохо слышащим лицом с хорошей степенью.

Чтобы данное явление произошло, аппарат должен усилить звуковой сигнал, изменить его характеристики, как частотные, так и динамические, опираясь на особенности у человека.

Важно понять на начальном этапе, какое устройство нужно больному, оценить ключевые требования. Например, бинауральное применение дает возможность работать обоим ушам , улучшает речевые возможности, оптимизируя локализацию. Но аппараты такого типа подойдут не каждому, поскольку цена достаточно высока.

Сурдолог проводит аудиометрию - измерение остроты слуха, определение слуховой чувствительности к звуковым волнам разной частоты

Устройство должно подбираться особенно тщательно при помощи квалифицированного врача. Хорошо, если в окружении плохослышащего будет тот, кто поможет на начальном этапе эксплуатации.

Виды слуховых аппаратов

Наиболее частым является вопрос, какой слуховой аппарат лучше. Выбор обширен, поэтому данный вопрос не имеет четкого ответа. Для конкретного лица лучшим станет такой прибор, который выбран и настроен специально под него, то есть индивидуально подобранный .

Предварительно придется обсудить со специалистом особенности недуга, потребности, бюджет, стиль жизни, ожидания и так далее. На основании всего вышеперечисленного и будет рекомендован конкретный, подходящий именно вам прибор.

Исходя из «наполненности» приборов имеется несколько типов их классификации. Рассмотрим какие бывают виды слуховых аппаратов и как они называются.

Способ обработки сигнала

Типы устройств зависят даже от такого параметра, как обработка сигнала:

  1. Аналоговые устройства работают за счет нескольких составляющих. Микрофон обеспечивает прием колебаний звука, преобразуя их в сигналы электрического типа, попадающие далее в усилитель. Растущие сигналы переходят к телефону, который в свою очередь преобразует колебания в звуковые.
  2. Устройства цифрового типа дополнительно преобразуют аналоговые сигналы в цифровые. Далее идет их обработка с применением современных достижений. В основе стоит работа электронной интегральной схемы.

Внешний вид заушного цифрового аппарата с наиболее распространенными названиями его составных частей

Цифровые технологии, которые особенно стремительно развиваются в последнее время, дали возможность получить невиданные ранее возможности в области слуховой коррекции. Минимальное количество «помех» сделали звучание аппаратов максимально чистым, близким к природному.

Метод настройки

Типы слуховых аппаратов по методу настройки:

  1. Непрограммируемые , то есть настраиваемые вручную, где громкость корректирует владелец через регулятор.
  2. Программируемые . Подключение происходит к компьютеру при помощи кабеля, настраивается цифровым методом. Настройки можно сохранять или корректировать. Большинство таких устройств позволяют хранить в памяти две или больше программ, настроенных по-разному.

Усиление сигнала

В зависимости от усиления сигнала аппараты бывают:

  1. Линейного типа . Дают более сильные сигналы, несмотря на то, какой у них параметр слышимости на единицу. При начальном уровне звукового давления имеют более 130 дБ на выходе. Имеется возможность корректировки параметра выхода, который устанавливается пользователем при неприятном для него уровне звука.
  2. Нелинейные . Параметр усиления, наделенный возможностью автоматической настройки, зависит от размера поступающего сигнала. До момента достижения поступающего сигнала конкретной отметки (порога срабатывания), коэффициент будет неизменным, как и у линейных приборов. Коэффициент начинает снижаться, когда идущий сигнал становится больше установленного порога. Он в свою очередь определяется протезистом, опираясь на индивидуальные особенности пациента.

Способы звукопроведения

Методы звукового проведения также могут отличаться:

  1. Костный тип проводимости используется при . Аппарат аналогичен вибратору костного типа. При выходе сигнал становится вибрационным.
  2. Проводимость воздушная применяется при любых слуховых потерях. Передатчиком выступает специальный вкладыш.

Слуховой аппарат костной проводимости

Конструктивная классификация

Исходя из того, где носится устройство, они могут быть четырех видов:

  • внутриушные;
  • очковые;
  • заушные.

Внутриушные приборы устанавливаются в отверстие уха полностью. Составляющие находятся в самом аппарате, изготовленном индивидуально, опираясь на индивидуальное строение пациента, его особенности.

Слуховое устройство может быть внутриканальным. Его устанавливают достаточно далеко, но при этом ушная часть раковины полностью не закрыта. Это самый маленький слуховой аппарат, снаружи он не заметен, этим и многих привлекает.

Внутриушные слуховые аппараты

Карманный слуховой аппарат - устройство, которое можно носить в кармане, состоящее из корпуса, наделенного микрофоном, источником питания и усилителем. Телефон аппарата соединен с корпусом, располагается в ухе со вкладышем. Такое устройство может обладать очень хорошими характеристиками мощности, поскольку микрофон и телефон друг от друга находятся на расстоянии, а это не дает акустическую обратную связь.

Очковый слуховой аппарат - прибор, устанавливаемый на дужке очков. Вибратор у такого аппарата находится на внутренней части. Когда человек одевает очки, вибратор надежно стыкуется с мастоидом - сосцевидным отростком.

Заушный прибор располагается за раковиной уха. При помощи специальной трубочки к нему прикрепляется вкладыш, который и находится в проходе. Он обеспечивает проход звука в ухо, а также надежно фиксирует устройство. Такой прибор дает хорошее усиление и дополнительные возможности, в сравнении с другими аппаратами. Пользуется большой популярностью.

Карманный слуховой аппарат (слева) и очковый слуховой аппарат (справа)

Вкладыш, который так и называется «ушным вкладышем» - важнейшая часть заушного слухового прибора. От него многое зависит, а в частности успешное протезирование. Они бывают стандартного типа и индивидуальные, изготавливаемые непосредственно под потребности и запросы больного. У индивидуального вкладыша множество неоспоримых преимуществ, среди которых отличная форма, оптимальный размер, герметичность, надежность фиксации и так далее. Без него нельзя рассчитывать на 100% успешное слуховое протезирование.

Итак, все вышеперечисленные современные приспособления наделены немалым количеством положительных сторон, подбираются они индивидуально. Для оптимального подбора ушного аппарата нужно опираться на степень и , форму слухового канала.

Понять это сможет только профессионал, а именно сурдолог. В его компетенции помощь в подборе нужного вида аппарата, который будет полностью соответствовать потребностям конкретного человека.

Выбор слухового аппарата базируется на определении оптимального усиления для эффективного проведения звука к уху пациента. Эффективность определяется сочетанием электроакустического ответа устройства, способа подведения усиленного звука и особенностей устройства, необходимых для оптимизации подачи звука.

а) Электроакустические характеристики слуховых аппаратов .

1. Анализ основного сигнала . Каждый слуховой аппарат имеет свою характерную акустическую мощность, ограниченную частотными возможностями, входом-выходом и ограничителем выходной мощности. Мощность слухового аппарата является суммой входящего сигнала и величины усиления, обеспеченного устройством. Амплитудно-частотная характеристика слухового аппарата характеризуется усилением при моделировании частоты входного сигнала.

В дополнение к изменению частоты усиление слухового аппарата может также обеспечиваться моделированием уровня интенсивности входящего сигнала. Ответ входа-выхода зависит от взаимосвязи между интенсивностью входящего и выходящего сигнала заданной частоты.

Имеется два основных класса функции входа-выхода слухового аппарата , линейный и нелинейный. Первые модели современных слуховых аппаратов использовали линейный метод усиления, в котором все входящие звуки усиливались одинаково. Поскольку большинство сенсоневральных нарушений слуха нелинейны в околопороговых областях, линейное усиление не давало результатов. Решением было использование сжатой схемы, которая обеспечила возможность дифференцированного усиления сигнала в зависимости от интенсивности входящего звука.

Обычно низкоинтенсивные звуки на входе усиливаются в более значительной степени, чем звуки высокой интенсивности. Использование компрессионной схемы позволило сжать звуковой сигнал до приемлемого динамического уровня пациента, снижая искажение сигнала.

Фотографии слуховых аппаратов различного дизайна:
А. Заушный слуховой аппарат; Б. Внутриушной; В. Внутриканальный; Г. С полным внутриканальным погружением.
Производство Phonak.

В линейных слуховых аппаратах выход ограничивался феноменом, известным как «peak-clipping» (ограничение пика), когда выход энергии при достижении определенного уровня резко ослабевает. Такой простой метод линейного усиления и ограничения пика был вполне эффективен при кондуктивной тугоухости, но оказался полностью неудовлетворительным для реабилитации при сенсоневральной тугоухости. Помимо этого, ограничение пика было неэффективным подходом для ограничения выхода, вызывая значительное искажение акустического сигнала. Компрессионные методики были использованы и в аналоговых схемах для уменьшения искажения.

Фундаментальный подход определения отправной точки при выборе слухового аппарата заключается в установлении амплитудно-частотных характеристик на основе аудиометрических исследований. Был разработан перечень необходимых правил. Некоторые их них базируются только на определении порогов слуховой чувствительности и пробных установок мощности, усиливающей уровень до комфортного восприятия обычной речи, или предпочтительного уровня слушания. Простое правило прибавления, например, прибавление половины, означает усиление, равное половине объема утраты слуха; правило трети означает прибавление третьей части.

Большинство предписаний используют этот простой подход в качестве базового, чтобы затем подбирать частоты в конкретном случае с помощью эмпирически полученного поправочного коэффициента. Один из ранних пороговых подходов, используемых до сих пор, разработан Национальной акустической лабораторией (NAL).

Другой подход к определению амплитудно-частотных характеристик основан на уровнях порога и дискомфорта. Один из таких методов - желаемый уровень чувствительности (desired sensation level, DSL). DSL исходно был разработан для подбора слуховых аппаратов у детей, и основан как на определении порога, так и на предсказании дискомфортного уровня.

Другие исследования используются для определения типа слухового аппарата и определения необходимости в протезировании обоих ушей. В случае наличия кондуктивно-го компонента, заданная мощность обычно усиливается до 25% костно-воздушного интервала имеющейся частоты. При бинауральном слухопротезировании мощность на каждом ухе должна быть снижена 3-6 дБ для бинауральной суммации.


Фотография слухового аппарата:
А. Заушина с выносным ресивером и Б. Размещаемый в слуховом проходе аппарат.
Производство Phonak.

2. Направления в получении сигнала . Использование DSP оказало существенное влияние на гибкость подбора слухового аппарата и выбор кандидатов. В прошлом особые слуховые аппараты подбирались на основании сложения электроакустических характеристик аппарата и слуховой чувствительности пациента. Для определения необходимой мощности использовалась аудиограмма пациента. Затем схема тщательно изучалась для подгонки к необходимой, которая и использовалась в слуховом аппарате. В настоящее время благодаря гибкости цифровых усилителей слуховые аппараты имеют широкий спектр возможностей, а электроакустические характеристики могут меняться в нужном диапазоне.

Таким образом выбор определяется не сколько мощностью на выходе, сколько дизайном и оформлением. Усиление сигнала более детально рассматривается после выбора внешнего оформления.

Совершенствование нелинейных усилителей снизило использование методов , основанных на определении порога для специфической целевой мощности. Для таких компрессионных усилителей широкого спектра разрабатываются новые методы, чтобы обеспечивать мягкий, умеренный и достаточно громкий звук. Многие современные подходы сочетают линейные подходы ранних моделей с вариантами для мягкого и громкого звучания.

Различные типы слуховых аппаратов :
а - Заушной слуховой аппарат,
б - Внутриканальный слуховой аппарат («ушной вкладыш»).

б) Дизайн слухового аппарата . Расположение слухового аппарата в слуховом проходе имеет влияние на и на функционирование этого устройства. Введение любого объекта, такого как аппарат, в ушную раковину приводит к потерям слуха из-за эффекта ослабления объектом, что известно как вносимые потери. Это дополнительное снижение должно учитываться и прибавляться в выбранном аппарате к характеристикам усиления. Введение устройства в слуховой проход вызывает и так называемый окклюзионный эффект, заключающийся в усилении при низкочастотных компонентах акустического сигнала, в том числе и в зависимости от голоса пациента. Обычно это вызывает ощущение слишком громкого звука, гула или эха.

Другой важной особенностью при использовании слухового аппарата оказалось отдаленное расположение системы от естественного усилителя уха. Естественным микрофоном является барабанная перепонка, которая передает речевые частоты из слухового прохода на улитку. Барабанная перепонка также получает акустический сигнал, что важно для пространственной локализации. Когда слуховое устройство добавляется в систему, а микрофон удаляется от барабанной перепонки, эти принципы поступления сигнала изменяются. Большое удаление микрофона из слухового прохода в еще большей степени нарушает этот важный механизм.

Потеря пространственных сигналов и резонансных пиков должна также учитываться при подборе устройства, особенно с учетом технологических характеристик аппарата.

Альтернативой удаленному расположению микрофона от барабанной перепонки будет его размещение в слуховом проходе как можно глубже. Таким образом, микрофон располагают в непосредственной близости к приемнику или громкоговорителю, что повышает вероятность акустической обратной связи и снижает объем необходимой мощности. Во многих современных устройствах используются подходы с поиском оптимального расположения микрофона.

В результате при разработке оптимального для пациента слухового устройства принимается во внимание большее количество факторов. Наиболее важны уровень и форма снижения слуховой чувствительности. Другие факторы, влияющие на дизайн, включают обратную связь, дренажные и вентиляционные возможности, размер, долговечность, положение микрофона и предпочтение пациента.

Принцип работы имплантируемого слухового аппарата. Наружный микрофон и речевой процессор (1) проводят звук через кожу к имплантируемому приемнику (2).
Кабель (3) соединен с крошечным преобразователем (4), который непосредственно заставляет вибрировать слуховые косточки,
как при естественных их колебаниях, и в результате к улитке поступает усиленный сигнал.

1. Основы дизайна . Слуховые устройства в целом могут быть разделены на две основные группы ВТЕ (заушные) и ITE (внутриушные). Аппараты класса ВТЕ большей своей частью размещаются снаружи слухового прохода и ушной раковины. Эти аппараты соединяются с ухом через слуховой проход с учетом формы уха. Обычно ВТЕ аппараты готовят по форме уха пациента.

Слуховые аппараты класса ITE варьируют в размерах от почти полностью закрывающих ушную раковину моделей, до компактных, полностью погружаемых в слуховой проход.

Как было указано ранее, акустическая обратная связь возникает, когда усиленный звук, исходящий от приемника направляется обратно в микрофон этой же усиливающей системы. Лучший способ удалить обратную связь заключается в разделении микрофона и приемника в пространстве. Хотя были разработаны методы обработки сигналов для автоматической отмены обратной связи, метод физического подавления обратной связи остается самым эффективным. Так, для пациентов с относительной утратой чувствительности, когда необходима большая мощность, предпочтительным подходом для устранения обратной связи будет выбор устройства с физическим подавлением, т.е. заушный вариант.

Одним из наиболее эффективных подходов для уменьшения окклюзионного эффекта является использование вентиляции. В заушине или корпусе может выполняться небольшое отверстие. Отверстие обеспечивает циркуляцию воздуха в слуховом проходе и элиминацию низкочастотных звуков. В большинстве случаев элиминация низкочастотных звуков желательна, поскольку усиление низких частот может вызвать у пациента эффект громкого звучания собственного голоса или эхо. Однако в случаях, когда требуется значительное повышение мощности, наличие вентиляционного отверстия может создавать условия для появления обратной связи, поскольку звук «сбрасывается» через это отверстие.

Еще одной важной характеристикой для выбора аппарат является полный размер устройства. Как правило, слуховые аппараты меньшего размера имеют больший потенциальный риск для появления обратной связи в силу близкого расположения микрофона и приемника. Размер устройства также диктует условия технического контроля, доступного для пациента, поскольку в мелких устройствах меньше места для размещения переключателей. В полностью погружаемых в слуховой проход слуховых аппаратах многие функции управления вообще не доступны из-за отсутствия места.

Размеры батареи питания также ограничиваются размерами слухового аппарата. Все это может быть препятствием при реабилитации пациентов с двигательными или зрительными нарушениями. При выборе размера устройства должны приниматься в расчет потребности этих пациентов.

Обычно оказываются в условиях, не подходящих для электронных устройств. Влага и сера слухового прохода в целом негативно воздействует на электронику. К тому же, слуховые аппараты с электронными компонентами, располагаемые за ушной раковиной, должны быть прочнее устройств, помещаемых в слуховой проход.

Выбор, в конечном счете, определяется учетом всех значимых факторов и проводится среди большого количества различных технических конструкций . Немаловажно мнение и предпочтения самого пациента. Очень часто именно выбор пациента становится определяющим при подборе слухового аппарата.

Принцип работы улиткового имплантата.
Акустический сигнал попадает на микрофон (1),
который располагается за ушной раковиной и обрабатывается наружным речевым процессором (2).
Электронный приемник (3) имплантируют в височную кость и укрывают кожей.
Он связан с матрицей электродов (4), вставленной в улитку (5).
Электроды непосредственно стимулируют преддверно-улитковый нерв (6).

2. Направления развития слуховых аппаратов . Основным направлением в развитии слуховых аппаратов является миниатюризация обоих типов ITE и ВТЕ. Использование DSP снизило необходимость в наружном управлении слуховыми аппаратами, позволив создать компактное устройство с более гладкой и «обтекаемой» формой. Это соответствовало косметическим запросам и комфорту большого числа потенциальных пользователей.

Современное направление развития заключается в использовании так называемой системы «open-fit» и RCT в слуховых аппаратах. Термин «open-fit» подразумевает использование неокклюзивных ушных вкладышей «ореп-fit» (также называемый «заушина»). Слуховой аппарат ВТЕ направляет звук в слуховой проход через тубус, находящийся в слуховом проходе, соединенный с устройством гибким проводом. Заушная часть также должна быть сконструирована с учетом оптимального расположения.

Технологии RIC (внутриканальный приемник, receiver-in-canal) диктуют требования к конструкции устройства, при которой микрофон и усилитель располагаются кзади или над ухом, в то время, как приемник находится в слуховом проходе. Электрический сигнал передается через тонкий провод. Приемник помещается в слуховой проход в мягком конусе с использованием «open-fit» или ушного вкладыша. Существуют два основных преимущества подхода RIC. Во-первых, отделение приемника от микрофона и усилителя, что позволяет значительно повышать мощность без появления обратной связи.

Во-вторых, поскольку микрофон и усилитель отделены от приемника, значительно уменьшается дефицит пространства, давая возможность создания аппарата меньшего размера или размещения большего количества компонентов внутри самого ВТЕ.

Использование технологий «open-fit » и RIC позволило расширить круг кандидатов на слухопротезирование при резко нисходящей тугоухости и умеренной тугоухости, когда необходимо усилить высокие частоты, без окклюзии уха, не блокируя нормальный низкочастотный слух.


Схематическое изображение компонентов слухового аппарата.

г) Технологические особенности . После решения о дизайне слухового аппарата следует определить необходимые электроакустические компоненты.

1. Основы . Слуховые аппараты состоят из трех основных компонентов: микрофона, трансформирующего акустическую энергию в электрическую, усилителя, повышающего силу электрического сигнала и приемника, трансформирующего электрическую энергию обратно в акустическую. В дополнение, слуховым аппаратам требуется источник питания в виде батареи. Переключатели громкости и программ управления, обычно также входят в состав аппарата.

Большинство слуховых аппаратов имеют дополнительные входы, альтернативные микрофону. Обычно слуховой аппарат может быть оснащен системой подключения к телефону и настроечными блоками. Многие слуховые аппараты могут напрямую принимать аудиосигналы и радиосигналы и оснащаются FM-приемниками.

В случае выбора традиционной модели ВТЕ , ушной вкладыш должен быть выполнен с возможностью погружения в слуховой проход. Существует много моделей ушных вкладышей, от полностью заполняющих ушную раковину, до внутриканальных, затрагивающих только слуховой проход. Также имеется довольно большой выбор материалов для изготовления вкладышей. Акриловые, наиболее твердые, легче устанавливать и извлекать. Силиконовые, мягкие, обеспечивают лучшую обтурацию и предотвращение обратной связи. Силиконовые модели чаще используются в педиатрической практике из соображений безопасности. Винил - материал, занимающий промежуточную позицию. Также могут использоваться гипоаллергенные материалы.

2. Направления в технологических возможностях . Потенциал DSP систем обеспечивает целый ряд технологических возможностей, позволяющих расширить круг пользователей. Эти возможности включают адаптацию, различные программы, цифровое подавление шума, цифровое подавление обратной связи, тренировку, запись параметров, беспроводное соединение, а также автоматический контроль за всеми вышеперечисленными функциями. Уровень и доступность этих функций зависит от вида и конфигурации тугоухости, что в свою очередь диктует и дизайн всего слухового устройства. Потребности и предпочтения пациента также являются фактором, определяющим технологические возможности слуховых аппаратов.

Общим признаком слуховых аппаратов является направленность. Большинство устройств оснащены многонаправленным микрофоном, с возможностью усиления звуков, идущих из определенного направления и не восприятия звуков из других зон. Эти возможности заключаются в усилении звуков, идущих спереди от пациента, где и должен находиться собеседник, и в ослаблении звукового фона. Эффект от использования таких слуховых аппаратов состоит в повышении разборчивости речи в шуме. Направленные микрофоны могут иметь различную схему. В простейших моделях микрофон может быть переключен с многонаправленного режима на однонаправленный. В более сложных моделях количество направлений может быть бесконечно большим.

Разработаны модели с автоматическим контролем , соответственно, количество каналов меняется автоматически с учетом уровня распознанного шума.

Еще одной возможностью слуховых аппаратов является цифровое программирование или память. Большое количество программ меняет работу слуховых аппаратов в зависимости от различных звуковых ситуаций. Например, одна программа работает в тихой обстановке с использованием многоканального микрофона, другие в шумной обстановке, когда необходимо выделить полезный звук. Особые программы используются при разговоре по телефону, прослушивании музыки или любых ситуациях, требующих определенного ответа слухового аппарата. Контроль за программами может быть мануальным или автоматическим.

Уменьшение функций, требующих участия самого пользователя, является одним из приоритетных направлений развития слуховых аппаратов с устранением регулятора громкости и кнопок для ручного управления; возможно дистанционное управление для поддержки адаптивного управления самого аппарата. Многие слуховые аппараты обладают возможностью анализа акустического окружения, чтобы выполнять перепрограммирование ответа аппарата при изменениях ситуации.


Изображение экрана записи результатов функционирования слухового аппарата.

Подавление шума - функция , доступная в большинстве цифровых слуховых аппаратов. Цель состоит в подавлении нежелательных посторонних шумов, ухудшающих восприятие полезной речи и комфорт слушателя. Сложные цифровые алгоритмы обеспечивают слуховые аппараты возможностью фильтрации источников шума и других сигналов на основании показателей частоты, интенсивности и времени. Когда нежелательный шум идентифицируется, параметры усиления соответственно перестраиваются.

Как было указано выше, акустическая обратная связь возникает, когда усиленный сигнал перенаправляется в микрофон или усилитель. Наиболее распространенный и эффективный способ устранения этого эффекта - разделение микрофона и ресивера. Тем не менее, DSP имеет возможность дополнительного подавления обратной связи, в случае шума обратная связь распознается по параметрам частоты, интенсивности и времени. Когда слуховой аппарат распознает появление обратной связи, обеспечивается подавление последней путем снижения мощности в заданном частотном диапазоне или подавлением фазы сигнала обратной связи.

Регистрация данных в аппарате служит для отслеживания и записи настроек пользователя и моделей использования. Статистические параметры использования могут быть проанализированы с помощью специального программного обеспечения слухового аппарата. Обычно используется такая информация, как общее время использования слухового аппарата, использование ручных и автоматических режимов, классификация ситуаций звукового определения. Запись параметров полезна, когда у пациента имеются жалобы. Внесение изменений в программу может быть проведено с учетом результатов записи. Процесс внесения в программу изменений с учетом предпочтений пользователя может быть даже автоматизирован. Пример использования записи данных представлен на рисунке ниже.

Возможность записи и фиксации данных позволяет проводить многократную настройку слухового аппарата в процессе пользования. В некоторых ситуациях запись параметров позволяет автоматически менять программу в соответствии с предпочтениями пациентов. У некоторых моделей предусматривается возможность мануального контроля параметров при дополнительной настройке. К примеру, пациент может самостоятельно выбрать громкость и программные характеристики в зависимости от окружающей обстановки. Сохранив выбранные параметры, можно использовать этот режим в будущем при аналогичных акустических условиях.

Следует отметить и такую техническую возможность некоторых аппаратов как автоматическая проверка целостности аппарата. Слуховой аппарат самостоятельно выявляет наиболее распространенные нарушения функционирования и информирует об этом пользователя, указывая возможности для исправлений.

Советы по выбору слухового аппарата. Виды слуховых аппаратов

Слуховой аппарат является специальным приспособлением, которое предназначено для усиления слуха. Он увеличивает силу звуков в несколько раз, а также модулирует их, поэтому человек может нормально слышать.

Как же правильно и грамотно выбрать слуховой аппарат, чтобы не ошибиться? Давайте разбираться.

В настоящее время существуют различные виды слуховых аппаратов, которые помогают человеку нормально адаптироваться в социуме.

Однако выбор прибора будет зависеть от следующих факторов:

  • технические характеристики;
  • стоимость;
  • вид нарушения слуха, который диагностируется с помощью современных дополнительных методов исследования;
  • косметические пожелания пациента (некоторые модели совершенно незаметны в процессе эксплуатации).

Виды слуховых аппаратов

Классификация слуховых аппаратов учитывает различные характеристики. Так, по способу ношения они бывают следующими:

  • Нательный
  • Заушный
  • Внутриушный
  • Внутриканальный.

Проводимость звуков обеспечивается как за счет колебаний воздуха, так и за счет костных колебаний. На этом основаны разные принципы работы слуховых аппаратов. Согласно этой характеристике, выделяют приборы костной или воздушной проводимости. Первые используются, когда нарушается только проведение звука, а его восприятие остается нормальным. Вторые можно использовать как в одном, так и в другом случае.

Также слуховые аппараты могут классифицироваться с учетом их настройки. Поэтому они бывают как непрограммируемые, так и программируемые. В первом варианте пациент их настраивает самостоятельно. В программируемых устройствах имеется специальный кабель, который подключается к компьютеру, а только затем настраивается.

Усиление слухового сигнала может производиться двумя основными способами. С учетом этого выделяют линейные и нелинейные слуховые аппараты. В линейных происходит постоянное усиление звукового сигнала, а в нелинейных усиление зависит от силы поступающего звука. Это означает, что незначительные звуки усиливаются постоянно, а сверхсильные, наоборот, при определенном значении постепенно снижаются, что положительно отражается на качестве звукового сигнала.

Мощность звука в приборе также может быть различной. От нее будет зависеть качество воспринимаемого звукового сигнала.

В зависимости от этой характеристики слуховые аппараты бывают следующих видов:

  • маломощные;
  • среднемощные;
  • мощные;
  • сверхмощные.

Обработка звукового сигнала может быть цифровой и аналоговой. Соответственно этому выделяют два основных вида слуховых аппаратов – цифровые и аналоговые. В настоящее время используются, как правило, только цифровые приборы, которые выгодно отличаются от аналоговых по качеству воспринимаемого звука.

Однако данная статья носит ознакомительный характер, поэтому помощь врача-сурдолога является незаменимой. Он поможет выбрать наиболее подходящий вид прибора, чтобы получить звук максимально хорошего качества. Поэтому не стоит полагаться на свою интуицию и знания, пренебрегая помощью врача.

Сравнительные характеристики

Сравним некоторые характеристики слуховых аппаратов в зависимости от вида, которые влияют на качество слуха у пациента. Для заушного аппарата характерны следующие особенности:

  • простота в использовании;
  • надежность прибора;
  • располагаются за ухом пациента, поэтому могут причинять некоторые косметические неудобства;
  • заушные слуховые аппараты могут использовать люди разного возраста, то есть ограничений в этом отношении нет.

Существует разновидность слухового аппарата – «открытое ухо». Он также размещается позади ушной раковины, но звукопроводящая трубочка, идущая в слуховой проход, незаметна. Она выполнена из специального материала. Также эти устройства имеют следующие преимущества:

  • современный дизайн;
  • хорошие косметические характеристики;
  • значительное улучшение качества воспринятого звука;
  • они используют в своей работе микросхемы электронного типа с учетом современных достижений науки.

Внутриушные аппараты имеют такие характеристики, как:

  • максимальная компактность для размещения прибора на ушной раковине;
  • хорошие косметические качества;
  • основное показание для их использования – это грубые нарушения слуха;
  • готовятся по индивидуально снятому слепку, поэтому точно повторяют изгибы ушной раковины — это позволяет максимально хорошо улавливать звуки.

Внутриканальный аппарат имеет самые лучшие косметические свойства, так как располагается внутри наружного слухового прохода, поэтому является практически невидимым. Помимо этого ему присущи и такие положительные качества, как:

  • максимально хорошее качество звука, так как устраняются посторонние звуковые сигналы;
  • хорошая разборчивость речи;
  • четкое восприятие звуков;
  • звучание, максимально приближенное к естественному;
  • индивидуально изготовленный корпус;
  • этот прибор позволяет воспринимать речь и другие звуки даже при четвертой степени тугоухости.

При выборе звукоусиливающего устройства следует учитывать определенные характеристики. От них зависит как качество звуковых сигналов, так и стоимость прибора. Как правило, чем лучше воспринимаются звуки, тем дороже устройство.

Основными особенностями, которые должны быть учтены (именно поэтому требуется помощь врача-сурдолога), являются следующие:

В заключение необходимо отметить, что выбор звукоусиливающего устройства — очень ответственное дело, поэтому им должен заниматься специалист (врач-сурдолог). Чтобы человек с нарушением слуха максимально естественно воспринимал те или иные звуки, необходимо провести диагностику, для которой используются самые современные приборы. Она позволяет выявить, какое именно звено в слуховом анализаторе страдает.

С учетом этого будет произведен врачом выбор того или иного прибора. Последние бывают различных моделей и классов в зависимости от своих технических характеристик, которые накладывают существенный отпечаток на стоимость прибора. Это означает, что чем более совершенен слуховой аппарат и чем лучше качество звука, тем дороже он выйдет.

Наряду с использованием зрительного представления информации в системах отображения применяется и слуховая форма представления информации. Характерными особенностями слухового анализатора являются:

способность быть готовым к приему информации в любой момент времени;

способность воспринимать звуки в широком диапазоне частот и выделять необходимый;

способность устанавливать со значительной точностью местоположение источника звука.

В связи с этим слуховое предъявление информа­ции осуществляется в тех случаях, когда оказывается возможным использовать указанные свойства слухово­го анализатора. Наиболее часто слуховые сигналы при­меняются для сосредоточения внимания человека-опе­ратора (предупредительные сигналы), для передачи ин­формации человеку-оператору, находящемуся в положе­нии, не обеспечивающем ему достаточной для работы ви­димости приборной панели, а также для разгрузки зрительной системы.

Для эффективного использования слуховой формы представления информации необходимо знание характе­ристик слухового анализатора человека-оператора.

Свойства слухового анализатора оператора прояв­ляются в восприятии звуковых сигналов. Звуковые сиг­налы характеризуются следующими параметрами: ам­плитуда, частота, форма звуковой волны, длительность звука.

Амплитуда звуковых сигналов обычно представляется через звуковые давления. Установлено, что оператор способен воспринимать звуки в диапозоне 10 -4 -10 3 микробор. В связи с большой величиной диапазона давлений оказывается целесообразным введение парамет­ра - уровня звукового давления, определяемого уравнением

L = 20 lg (p 1 / p 0 ),

где L - уровень звукового давления при давленииp 1 ;p 0 - исходное давление.

В связи с тем, что в реальных условиях работы опера­тора всегда присутствует некоторый шум, возникает не­обходимость выделять полезный сигнал. В этих условиях оперируют с разницей между двумя уровнями звуковых давлений:

Δ L = L c L ш = 20 lg (p c / p ш ),

где р с - давление звукового сигнала;р ш - давление зву­кового шума (фона).

Минимальный уровень определенного звука, который требуется для того, чтобы вызвать слуховое ощущение в отсутствие шума, называют абсолютным порогом слыши­мости. Значение абсолютного порога зависит от тона зву­ка (частота, длительность, форма звукового сигнала), метода его предъявления и субъективных особенностей слухового анализатора оператора.

Различают три общепринятых абсолютных порога слышимости: минимально слышимое звуковое поле, ми­нимально слышимое звуковое давление, нормальный по­рог слышимости.

Минимально слышимое звуковое поле - это уровень звукового давления при абсолютном пороге слышимости молодого, тренированного оператора, слуховой анализа­тор которого не имеет физиологических отклонений. Опе­ратор ориентируется лицом к источнику звука и работает в звукопоглощающем помещении.

Минимально слышимое звуковое давление - это уро­вень звукового давления, значение которого отличается от предыдущего параметра в силу того, что человек-оператор работает в наушниках.

Нормальный порог слышимости - это условное зна­чение минимального уровня звукового давления на вхо­де звукового анализатора (уха) нетренированных опе­раторов, находящихся в бесшумном помещении и снабженных наушниками.

Рис. 1. Зависимость порога слышимости от высоты звукового сигнала.

На рис. 1 приведены зависимости рассмотренных типов абсолютного порога слышимости от частоты звукового сигнала. Абсолютный порог слышимости имеет тенденцию с возрастом уменьшаться. На рис. 2 приведены графики, характеризующие потерю слуха с возрастом у мужчин и женщин для различных частот звукового сигнала.

Рис. 2. Зависимость потери слуха с возрастом для различных частот звукового сигнала.

Сила слухового ощущения человека-оператора, вызванная звуковыми сигналами, называется громкостью. Для количественной оценки громкости введены шкалыуровня громкости и громкости. Уровень громкости зву­ка определяется как уровень звукового давления чис­того тона 10 3 Гц, звучащего одинаково громко со звукосигналом. Шкала громкости используется в том случае, если громкости тонов не совпадают.

Высота звука, как и громкость, характеризует зву­ковое ощущение оператора и определяется субъектив­ными особенностями слухового анализатора восприни­мать звуковой сигнал, имеющий широкий спектр частот и различную громкость. Зависимость высоты звука от частоты звукового сигнала приведена на рис. 3.

Рис. 3. Зависимость минимально заметных различий в частоте звукового сигнала.

Слуховой анализатор оператора обладает свойством повышения порога слышимости звукового сигнала в ус­ловиях воздействия шума. Это явление получило наз­вание маскировки, а возросший абсолютный процесс слышимости - порогом маскировки.

Ухо человека-оператора осуществляет частичный анализ входного сиг­нала и, подобно полосовому фильтру, отсекает шумы и маски­ровочный тон, которые выходят за границы частот полезного сиг­нала. Таким образом, повышается отношение сигнал/шум, а, следо­вательно, и слышимость сигнала. Ширина полосы пропускания слу­хового анализатора изменяется в зависимости от частоты входного звукового сигнала и соответствует 50-200 Гц. Так, при частоте звукового сигнала 800 Гц ширина полосы пропускания слухового анализа­тора в условиях воздействия шума может составлять 50 Гц.

Слуховой анализатор человека способен фиксировать даже незначительные изменения частоты входного звуко­вого сигнала. Избирательность зависит от уровня звуко­вого давления, частоты, длительности звукового сигнала и способа его представления.

Рис. 4. Зависимость максимально заметных различий в частоте звукового сигнала при различных длительностях его звучания.

На рис. 4 приведены зависимости минимально за­метных различий в частоте чистых тонов, воспринимае­мых операторами от частоты звукового сигнала. График показывает, что минимально заметные различия состав­ляют 2-3 Гц и имеют место на частотах ниже 103 Гц, тогда как для частот выше 103 Гц минимально заметные различия составляют около 0,3 % частоты звукового сиг­нала.

Избирательность звукового анализатора повышается при благоприятных уровнях громкости (30 дБ и более) и длительности звучания, превышающей 0,1 с.

Рис. 5. Зависимость минимально заметных различий частоты звука от длительности сигнала.

На рис. 5 приведены зависимости минимально заметных различий частоты звука от длительности сигнала. Установле­но, что минимально заметные различия частоты звуко­вого сигнала при его периодическом повторении су­щественно уменьшаются. Оптимальными могут считаться сигналы, повторяющиеся с частотой 2-3 Гц.

Необходимо отметить, что слышимость, а следова­тельно, и обнаруживаемость звукового сигнала сущест­венно зависят от длительности его звучания. Так, для полного восприятия чистых тонов требуется длительность 200-300 мс. Повышение обнаруживаемости сигна­ла при увеличении длительности его звучания обуслов­лено тем, что процесс слухового обнаружения сигнала является следствием флуктуационных свойств фонового шума и с увеличением длительности оказывается воз­можным увеличить число независимых выборок фоно­вого шума для выделения полезного сигнала. Для выделения чистого тона на фоне маскирующего шума дли­тельность сигнала должна быть не менее 300 мкс.

Рис. 6. Зависимость порога маскировки от длительности звучания тона.

На рис. 6 приведена зависимость порога маскировки от длительности звучания тона. Если длительность звучания тона меньше 300 мкс, то произведение времени на интенсивность звукового воздействия - величина пос­тоянная. Это соответствует линейному участку приве­денной зависимости. Характерно, что для этого участка влияние частоты тона незначительно. Для обнаружения изменений в высоте тона звуковой сигнал должен длиться не менее 100 мкс.

Важной характеристикой слухового анализатора опе­ратора является его способность распознавать кодовые комбинации некоторого звукового кода. Если при кодиро­вании использовать только один параметр звукового сиг­нала, то оператор способен различить не более 4-5 кодо­вых комбинаций. Например, при кодировании частотой звукового сигнала количество различных градаций рав­но 4, а при кодировании интенсивностью количество града­ций 5. При кодировании частотой и интенсивностью коли­чество градаций различных кодовых комбинаций увеличи­вается до 8. Используя для кодирования большее количе­ство признаков звукового сигнала, можно получить боль­шее количество кодовых комбинаций, что позволяет с высокой эффективностью использовать слуховой анализатор человека-оператора.

Наряду с рассмотренными звуковыми сигналами в АСУ используются речевые сигналы для передачи ин­формации или команд управления от оператора к оператору. Особую актуальность эта проблема приобрела в последние годы в связи с использованием речево­го взаимодействия человек - технические средства в интеллектуальных системах, используемых в том числе и в АСУ.

Важным условием восприятия речи является различе­ние длительности и интенсивности отдельных звуков и их комбинаций. Среднее время длительности произнесения гласного звука равно примерно 0,36 с, сог­ласного - 0,02-0,03 с. Восприятие и понимание речевых сообщений существенно зависят от темпа их передачи, наличия интервалов между словами и фразами и других факторов.

Так, оптимальным считается темп 120 слов/мин, ин­тенсивность речевых сигналов должна превышать ин­тенсивность шумов на 6,5 дБ.

При одновременном увеличении уровня речевых сиг­налов и шумов при постоянном их отношении разбор­чивость речи увеличивается до некоторого максимума. При значительном увеличении уровня речи и шума до 120 и 115 дБ соответственно разборчивость ре­чи ухудшается на 20 %.

Экспериментальные исследования процессов восприя­тия отдельных слов (команд), словосочетаний и завер­шенных фраз показали, что опознание речевых сигналов зависит от длины слова. Так, односложные слова пра­вильно распознаются в 12,7 % случаев, шестисложные - в 40,6 %. Это объясняется наличием в сложных словах большого числа опознавательных признаков. Имеет место повышение точности распознавания слов, начина­ющихся с гласного звука (на 10 %).

На восприятие слов решающее влияние оказывают синтаксические и фонетические закономерности. Так, установление синтаксической связи между словами в ряде случаев позволяет восстановить пропущенный сиг­нал.

При переходе к фразам оператор воспринимает не разрозненные сигналы, а некоторые грамматические конструкции, длина которых (до уровня 11 слов) не имеет особого значения.

Таким образом, вопрос организации звукового и ре­чевого взаимодействия оператор - оператор, оператор - техническое средство является отнюдь не тривиальным и его оптимальное решение оказывает существенное влияние на эффективность функционирования АСУ, эффективность человеко-машинного интерфейса.

В слуховом ощущении различают высоту, громкость и тембр звука . Эти характеристики слухового ощущения связаны с частотой, интенсивностью и гармоническим спектром - объективными характеристиками звуковой волны. Задачей системы звуковых измерений является установить эту связь и таким образом дать возможность при исследовании слуха у различных людей единообразно сопоставлять субъективную оценку слухового ощущения с данными объективных измерений.

Высота звука — субъективная характеристика, определяемая частотой его основного тона: чем больше частота, тем выше звук.

В значительно меньшей степени высота зависит от интенсивности волны: на одной и той же частоте более сильный звук воспринимается более низким.

Тембр звука почти исключительно определяется спектральным составом. Например, ухо различает одну и ту же ноту, воспроизведенную на разных музыкальных инструментах. Одинаковые по основным частотам звуки речи у различных людей также отличаются по тембру. Итак, тембр - это качественная характеристика слухового ощущения, в основном обусловленная гармоническим спектром звука.

Громкость звука Е — это уровень слухового ощущения над его порогом. Она зависит, прежде всего, от интенсивности звука. Несмотря на субъективность, громкость может быть оценена количественно путем сравнения слухового ощущения от двух источников.

Уровни интенсивности и уровни громкости звука. Единицы измерения. Закон Вебера-Фехнера .

Звуковая волна создает ощущение звука, при силе звука превышающей некоторую минимальную величину, называемую порогом слышимости. Звук, сила которого лежит ниже порога слышимости, ухом не воспринимается: он слишком слаб для этого. Порог слышимости различен для различных частот (Рис. 3). Наиболее чувствительно человеческое ухо к колебаниям с частотами в области 1000 - 3000 Гц; для этой области порог слышимости достигает величины порядка I 0 = 10 -12 вт/м 2 . К более низким и к более высоким частотам ухо значительно менее чувствительно.

Колебания очень большой силы, порядка нескольких десятков Вт/м 2 , перестают восприниматься как звуковые: они вызывают в ухе осязательное чувство давления, переходящее дальше в болевое ощущение. Максимальная величина силы звука, при превышении которой возникает болевое ощущение, называется порогом осязания или порогом болевого ощущения (Рис. 3). На частоте 1 кГц она равна I m = 10 вт/м 2 .

Порог болевого ощущения различен для различных частот. Между порогом слышимости и болевым порогом лежит область слышимости, изображенная на рисунке 3.

Рис. 3. Диаграмма слышимости.

Отношение интенсивностей звука для этих порогов равно 10 13 . Удобно использовать логарифмическую шкалу и сравнить не сами величины, а их логарифмы. Получили шкалу уровней интенсивности звука. Значение I 0 принимают за начальный уровень шкалы, любую другую интенсивность I выражают через десятичный логарифм ее отношения к I 0 :


Логарифм отношения двух интенсивностей измеряется в белах (Б).

Бел (Б) — единица шкалы уровней интенсивности звука, соответствующая изменению уровня интенсивности в 10 раз. Наряду с белами широко применяются децибелы (дБ), в этом случае формулу (6) следует записать так:

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 дБ

Рис. 4. Интенсивности некоторых звуков.

В основе создания шкалы уровней громкости лежит важный психофизический закон Вебера-Фехнера. Если, согласно этому закону, увеличивать раздражение в геометрической прогрессии (то есть в одинаковое число раз), то ощущение этого раздражения будет возрастать в арифметической прогрессии (то есть на одинаковую величину).

Элементарное приращение dE громкости звука прямо пропорционально отношению приращения dI интенсивности к самой интенсивности I звука:

где k — коэффициент пропорциональности, зависящий от частоты и интенсивности.

Тогда уровень громкости E данного звука определяется путем интегрирования выражения 8 в пределах от некоторого нулевого уровня I 0 до заданного уровня I интенсивности.

Таким образом, закон Вебера-Фехнера формулируется следующим образом:

Уровень громкости данного звука (при определенной частоте звуковых колебаний) прямо пропорционален логарифму отношения его интенсивности I к значению I 0 , соответствующему порогу слышимости:

Сравнительную шкалу, равно как единицу бел и децибел, применяют также для характеристики уровней звукового давления.

Единицы измерения уровней громкости имеют такие же названия: бел и децибел, но для отличия от шкалы уровней интенсивности звука в шкале уровней громкости децибелы называют фонами (Ф).

Бел - изменение уровня громкости тона частотой 1000 Гц при изменении уровня интенсивности звука в 10 раз . Для тона 1000 Гц численные значения в белах уровня громкости и уровня интенсивности совпадают.

Если построить кривые для различных уровней громкости, например, ступенями через каждые 10 фонов, то получится система графиков (рис. 1.5), которая дает возможность найти зависимость уровня интенсивности звука от частоты при любом уровне громкости.

В целом система кривых равной громкости отражает зависимость между частотой, уровнем интенсивности и уровнем громкости звука и дает возможность по двум известным из этих величин находить третью - неизвестную.

Исследование остроты слуха, т. е. чувствительность слухового органа к звукам разной высоты, называется аудиометрией. Обычно при исследовании находят точки кривой порога слышимости при частотах, пограничных между октавами. Октава - это интервал высот тона, в котором отношение крайних частот равно двум. Существует три основных метода аудиометрии: исследование слуха речью, камертонами и аудиометром.

График зависимости порога слышимости от звуковой частоты называется аудиограммой . Потеря слуха определяется путем сравнения аудиограммы больного с нормальной кривой. Используемый при этом аппарат — аудиометр — представляет собой звуковой генератор с независимой и тонкой регулировкой частоты и уровня интенсивности звука. Аппарат оборудован телефонами для воздушной и костной проводимости и сигнальной кнопкой, с помощью которой исследуемый отмечает наличие слухового ощущения.

Если бы коэффициент k был постоянным, то из L Б и E следовало бы, что логарифмическая шкала интенсивностей звука соответствует шкале громкостей. В этом случае громкость звука так же, как и интенсивность измерялась бы в белах или децибелах. Однако сильная зависимость k от частоты и интенсивности звука не позволяет измерение громкости свести к простому использованию формулы 16.

Условно считают, что на частоте 1 кГц шкалы громкости и интенсивности звука полностью совпадают, т.е. k = 1 и

Громкость на других частотах можно измерять, сравнивая исследуемый звук со звуком частотой 1 кГц. Для этого при помощи звукового генератора создают звук частотой 1 кГц. Меняют интенсивность этого звука до тех пор, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука. Интенсивность звука частотой 1 кГц в децибелах, измеренная по прибору, будет равна громкости этого звука в фонах.

Нижняя кривая соответствует интенсивностям самых слабых слышимых звуков — порогу слышимости; для всех частот E ф = 0 Ф , для 1 кГц интенсивность звука I 0 = 10 - 12 Вт/м 2 (рис..5.). Из приведенных кривых видно, что среднее человеческое ухо наиболее чувствительно к частотам 2500 - 3000 Гц. Верхняя кривая соответствует порогу болевого ощущения; для всех частот Е ф » 130 Ф , для 1 кГц I = 10 Вт/м 2 .

Каждая промежуточная кривая отвечает одинаковой громкости, но разной интенсивности звука для разных частот. Как было отмечено, только для частоты 1 кГц громкость звука в фонах равна интенсивности звука в децибелах.

По кривой равной громкости можно найти интенсивности, которые при определенных частотах вызывают ощущение этой громкости.

Например, пусть интенсивность звука частотой 200 Гц равна 80 дБ.

Какова громкость этого звука? На рисунке находим точку с координатами: 200 Гц, 80 дБ. Она лежит на кривой, соответствующей уровню громкости 60 Ф, что и является ответом.

Энергии, соответствующие обычным звукам, весьма невелики.

Для иллюстрации этого можно привести следующий курьезный пример.

Если бы 2000 человек вели непрерывно разговор в течение 1½ часов, то энергии их голосов хватило бы лишь на то, чтобы вскипятить один стакан воды.

Рис. 5. Уровни громкости звука для звуков различных интенсивностей.

Похожие публикации