Где находится клеточная мембрана в клетке. Клеточная мембрана: строение и функции


Мембраны биологические.

Термин "мембрана"(лат. membrana - кожица, пленка) начали использовать более 100 лет назад для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой - полупроницаемой перегородкой, через которую могут проходить вода и некоторые вещества. Однако этим функции мембраны не исчерпываются, поскольку биологические мембраны составляют основу структурной организации клетки.
Строение мембраны. Со гласно этой модели основной мембраны является липидный бислой, в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки-наружу. Липиды представлены фосфолипидпми - производными глицерина или сфингозина. С липидным слоем связаны белки. Интегральные(транмембраные) белки пронизывают мембрану насквозь и прочно с ней связаны; переферические не пронизывают и связаны с мембраной менее прочно. Функции мембраных белков: поддержание структуры мембран, получение и преобразование сигналов из окр. среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах. толщина мембраны составляет от 6 до 10 нм.

Свойства мембраны:
1. Текучесть. Мембрана не представляет собой жесткую структуру- большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембран.
2. Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторные функции, а также имеющий значение для объединения клеток в ткани)
3. Полярность. Внешняя сторона мембраны несет положительный заряд, а внутренняя-отрицательный.
4. Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ.(Использование по отношению к мембранам клеток термина "полупроницаемость" не совсем корректно, тк это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)

Наружная клеточная мембрана (плазмалемма) - ультрамикроскопическая пленка толщиной 7.5нм, состоящая из белков, фосфолипидов и воды. Эластичная пленка, хорошо смачвающася водой и быстро восстанавливающийся целостность после повреждения. Имеет универсальное строение, те типичное для всех биологических мембран. Пограничное положение этой мембраны, ее участие в процессах избирательной проницаемости, пиноцитозе, фагоцитозе, выведение продуктов выделения и синтез, во взаимосвязи с соседними клетками и защите клетки от повреждений делает ее роль исключительно важной. Животные клетки снаружи от мембраны иногда бывают покрыты тонким слоем,состоящим из полисахаридов и белков, - гликокаликсом. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы)-нерастворимого в воде полисахарида.

Основная структурная единица живого организма - клетка, являющаяся дифференцированным участком цитоплазмы, окруженным клеточной мембраной. Ввиду того что клетка выполняет множество важнейших функций, таких, как размножение, питание, движение, оболочка должна быть пластичной и плотной.

История открытия и исследования клеточной мембраны

В 1925 году Гренделем и Гордером был поставлен успешный эксперимент по выявлению «теней» эритроцитов, или пустых оболочек. Несмотря на несколько допущенных грубых ошибок, учеными было произведено открытие липидного бислоя. Их труды продолжили Даниэлли, Доусон в 1935 году, Робертсон в 1960 году. В результате многолетней работы и накопления аргументов в 1972 году Сингер и Николсон создали жидкостно-мозаичную модель строения мембраны. Дальнейшие опыты и исследования подтвердили труды ученых.

Значение

Что же представляет собой клеточная мембрана? Это слово стало использоваться более ста лет назад, в переводе с латинского оно означает «пленка», «кожица». Так обозначают границу клетки, являющуюся естественным барьером между внутренним содержимым и внешней средой. Строение клеточной мембраны предполагает полупроницаемость, благодаря которой влага и питательные вещества и продукты распада свободно могут проходить сквозь нее. Эту оболочку можно назвать основной структурной составляющей организации клетки.

Рассмотрим основные функции клеточной мембраны

1. Разделяет внутреннее содержимое клетки и компоненты внешней среды.

2. Способствует поддержанию постоянного химического состава клетки.

3. Регулирует правильный обмен веществ.

4. Обеспечивает взаимосвязь между клетками.

5. Распознает сигналы.

6. Функция защиты.

"Плазменная оболочка"

Наружная клеточная мембрана, называемая также плазменной, представляет собой ультрамикроскопическую пленку, толщина которой составляет от пяти до семи наномиллиметров. Она состоит преимущественно из белковых соединений, фосфолидов, воды. Пленка является эластичной, легко впитывает воду, а также стремительно восстанавливает свою целостность после повреждений.

Отличается универсальным строением. Эта мембрана занимает пограничное положение, участвует в процессе избирательной проницаемости, выведении продуктов распада, синтезирует их. Взаимосвязь с «соседями» и надежная защита внутреннего содержимого от повреждения делает ее важной составляющей в таком вопросе, как строение клетки. Клеточная мембрана животных организмов иногда оказывается покрытой тончайшим слоем - гликокаликсом, в состав которого входят белки и полисахариды. Растительные клетки снаружи от мембраны защищены клеточной стенкой, выполняющей функции опоры и поддержания формы. Основной компонент ее состава - это клетчатка (целлюлоза) - полисахарид, не растворимый в воде.

Таким образом, наружная клеточная мембрана выполняет функцию восстановления, защиты и взаимодействия с другими клетками.

Строение клеточной мембраны

Толщина этой подвижной оболочки варьируется в пределах от шести до десяти наномиллиметров. Клеточная мембрана клетки имеет особый состав, основой которого служит липидный бислой. Гидрофобные хвосты, инертные к воде, размещены с внутренней стороны, в то время как гидрофильные головки, взаимодействующие с водой, обращены наружу. Каждый липид представляет фосфолипид, который является результатом взаимодействия таких веществ, как глицерин и сфингозин. Липидный каркас тесно окружают белки, которые расположены несплошным слоем. Некоторые из них погружены в липидный слой, остальные проходят сквозь него. В результате этого образуются проницаемые для воды участки. Выполняемые этими белками функции различны. Некоторые из них являются ферментами, остальные - транспортными белками, которые переносят различные вещества из внешней среды на цитоплазму и обратно.

Клеточная мембрана насквозь пронизана и тесно связана интегральными белками, а с переферическими связь менее прочная. Эти белки выполняют важную функцию, которая заключается в поддержании структуры мембраны, получении и преобразовании сигналов из окружающей среды, транспорте веществ, катализации реакций, которые происходят на мембранах.

Состав

Основу клеточной мембраны представляет бимолекулярный слой. Благодаря его непрерывности клетка имеет барьерное и механическое свойства. На разных этапах жизнедеятельности данный бислой может нарушиться. Вследствие этого образуются структурные дефекты сквозных гидрофильных пор. В таком случае могут изменяться абсолютно все функции такой составляющей, как клеточная мембрана. Ядро при этом может пострадать от внешних воздействий.

Свойства

Клеточная мембрана клетки имеет интересные особенности. Благодаря текучести эта оболочка не является жесткой структурой, а основная часть белков и липидов, которые входят в ее состав, свободно перемещается на плоскости мембраны.

В целом клеточная мембрана асимметрична, поэтому состав белковых и липидных слоев различается. Плазматические мамбраны в животных клетках со своей наружной стороны имеют гликопротеиновый слой, который выполняет рецепторные и сигнальные функции, а также играет большую роль в процессе объединения клеток в ткань. Клеточная мембрана является полярной, то есть на внешней стороне заряд положителен, а с внутренней стороны - отрицателен. Помимо всего перечисленного, оболочка клетки обладает избирательной проницательностью.

Это означает, что кроме воды в клетку пропускается только определенная группа молекул и ионов растворившихся веществ. Концентрация такого вещества, как натрий, в большинстве клеток значительно ниже, чем во внешней среде. Для ионов калия характерно другое соотношение: их количество в клетке намного выше, чем в окружающей среде. В связи с этим ионам натрия присуще стремление проникнуть в клеточную оболочку, а ионы калия стремятся освободиться наружу. При данных обстоятельствах мембрана активизирует особую систему, выполняющую «насосную» роль, выравнивая концентрацию веществ: ионы натрия откачиваются на поверхность клетки, а ионы калия накачиваются внутрь. Данная особенность входит в важнейшие функции клеточной мембраны.

Подобное стремление ионов натрия и калия переместиться внутрь с поверхности играет большую роль в вопросе транспортировки сахара и аминокислот в клетку. В процессе активного удаления ионов натрия из клетки мембрана создает условия для новых поступлений глюкозы и аминокислот внутрь. Напротив, в процессе переноса ионов калия внутрь клетки пополняется число "транспортировщиков" продуктов распада изнутри клетки во внешнюю среду.

Как происходит питание клетки через клеточную мембрану?

Многие клетки поглощают вещества посредством таких процессов, как фагоцитоз и пиноцитоз. При первом варианте гибкой наружной мембраной создается маленькое углубление, в котором оказывается захватываемая частица. Затем диаметр углубления становится больше, пока окруженная частица не попадет в клеточную цитоплазму. Посредством фагоцитоза подпитываются некоторые простейшие, например амебы, а также кровяные тельца - лейкоциты и фагоциты. Аналогичным образом клетки поглощают жидкость, которая содержит необходимые полезные вещества. Такое являние носит название пиноцитоз.

Наружная мембрана тесно соединена с эндоплазматической сетью клетки.

У многих типов основных составляющих ткани на поверхности мембраны расположены выступы, складки, микроворсинки. Растительные клетки снаружи этой оболочки покрыты еще одной, толстой и отчетливо различимой в микроскоп. Клетчатка, из которой они состоят, помогает формировать опору тканям растительного происхождения, например, древесину. Клетки животных также обладают рядом внешних структур, которые находятся поверх клеточной мембраны. Они носят исключительно защитный характер, пример тому - хитин, содержащийся в покровных клетках насекомых.

Помимо клеточной, существует внутриклеточная мембрана. Ее функция заключается в разделении клетки на несколько специализированных замкнутых отсеков - компартментов или органелл, где должна поддерживаться определенная среда.

Таким образом, невозможно переоценить роль такой составляющей основной единицы живого организма, как клеточная мембрана. Строение и функции предполагают значительное расширение общей площади поверхности клетки, улучшение обменных процессов. В состав этой молекулярной структуры входят белки и липиды. Отделяя клетку от внешней среды, мембрана обеспечивает ее целостность. С ее помощью межклеточные связи поддерживаются на достаточно крепком уровне, образовывая ткани. В связи с этим можно сделать вывод, что одну из важнейших ролей в клетке играет клеточная мембрана. Строение и функции, выполняемые ею, радикально отличаются в различных клетках, в зависимости от их предназначения. Посредством этих особенностей достигается разнообразие физиологической активности клеточных оболочек и их ролей в существовании клеток и тканей.

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) - вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая - пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков . Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.


Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO 2 , O 2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример - натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз - это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) - синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

Клеточная мембрана называется плазмалеммой или плазматической мембраной. Главные функции клеточной мембраны - поддержание целостности клетки и осуществление взаимосвязи с внешней средой.

Строение

Клеточные мембраны состоят из липопротеиновых (жиробелковых) структур и имеют толщину в 10 нм. Стенки мембран образованы липидами трёх классов:

  • фосфолипидами - соединениями фосфора и жиров;
  • гликолипидами - соединениями липидов и углеводов;
  • холестеролом (холестерином) - жирным спиртом.

Эти вещества образуют жидкостно-мозаичную структуру, состоящую из трёх слоёв. Фосфолипиды формируют два внешних слоя. Они имеют гидрофильную головку, от которой отходят два гидрофобных хвостика. Хвостики повёрнуты внутрь структуры, образуя внутренний слой. При встраивании холестерола в хвостики фосфолипидов мембрана приобретает жёсткость.

Рис. 1. Строение мембраны.

Между фосфолипидами встроены гликолипиды, выполняющие рецепторную функцию, и белки двух видов:

  • периферические (внешние, поверхностные) - находятся на липидной поверхности, не проникая вглубь мембраны;
  • интегральные - встроены на разные уровни, могут пронизывать всю мембрану, только внутренний или наружный липидный слой;

Все белки отличаются по своей структуре и выполняют разные функции. Например, глобулярные белковые соединения имеют гидрофобно-гидрофильную структуру и выполняют транспортную функцию.

ТОП-4 статьи которые читают вместе с этой

Рис. 2. Виды мембранных белков.

Плазмалемма - текучая структура, т.к. липиды не связаны между собой, а просто выстроены в плотные ряды. Благодаря этому свойству мембрана может изменять конфигурацию, быть подвижной и эластичной, а также осуществлять транспорт веществ.

Функции

Какие функции выполняет клеточная мембрана:

  • барьерную - отделяет содержимое клетки от внешней среды;
  • транспортную - регулирует обмен веществ;
  • ферментативную - осуществляет ферментативные реакции;
  • рецепторную - распознаёт внешние стимулы.

Наиболее важной функцией является транспорт веществ при метаболизме. В клетку из внешней среды постоянно попадают жидкие и твёрдые вещества. Наружу выходят продукты обмена. Все вещества проходят через клеточную мембрану. Транспорт происходит несколькими путями, которые описаны в таблице.

Вид

Вещества

Процесс

Диффузия

Газы, жирорастворимые молекулы

Незаряженные молекулы свободно или с помощью специального белкового канала проходят сквозь липидный слой без затраты энергии

Растворы

Односторонняя диффузия в сторону большей концентрации растворённого вещества

Эндоцитоз

Твёрдые и жидкие вещества внешней среды

Перенос жидкостей называется пиноцитозом, твёрдых веществ - фагоцитозом. Проникают с помощью вытягивания мембраны внутрь до образования пузырька

Экзоцитоз

Твёрдые и жидкие вещества внутренней среды

Обратный эндоцитозу процесс. Пузырьки с веществами продвигаются цитоплазмой к мембране и сливаются с ней, выпуская наружу содержимое

Рис. 3. Эндоцитоз и экзоцитоз.

Активный транспорт молекул веществ (натрий-калиевый насос) осуществляется с помощью белковых структур, встроенных в мембрану, и требует затраты энергии в виде АТФ.

Средняя оценка: 4.7 . Всего получено оценок: 289.

Плазматическая мембрана , или плазмалемма, - наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов (рис. 1.6).

Молекулы фосфолипидов расположены в два ряда - гидрофобными концами внутрь, гидрофильными головками к внутренней и внешней водной среде. В отдельных местах бислой (двойной слой) фосфолипидов насквозь пронизан белковыми молекулами (интегральные белки). Внутри таких белковых молекул имеются каналы - поры, через которые проходят водорастворимые вещества. Другие белковые молекулы пронизывают бислой липидов наполовину с одной или с другой стороны (полуинтегральные белки). На поверхности мембран эукариотических клеток имеются периферические белки. Молекулы липидов и белков удерживаются благодаря гидрофильно-гидрофобным взаимодействиям.

Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью.

Мембраны - структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.

Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознава-нии факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят другкдругу как отдельные элементы цельной структуры. Такое взаимное узнавание - необходимый этап, предшествующий оплодотворению.

Подобное явление наблюдается в процессе дифференциров-ки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды.

Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.

Существует несколько механизмов транспорта веществ через мембрану.

Диффузия -проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемыеионные насосы. Наиболее изученным является Na - / К - -насос в клетках животных, активно выкачивающих ионы Na + наружу, поглощая при этом ионы К - . Благодаря этому в клетке поддерживается большая концентрация К - и меньшая Na + по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ.

В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg 2- и Са 2+ .

В процессе активного транспорта ионов в клетку через цито-плазматическую мембрану проникают различные сахара, нукле-отиды, аминокислоты.

Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем - посредством эндоцитоза. При эндоци-тозе {эндо... - внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впя-чивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.

Процесс, обратный эндоцитозу, - экзоцитоз (экзо... - наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пу-

зырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицел-люлоза и др.

Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.

Функции биологических мембран следующие:

    Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

    Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

    Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.).

    Являются катализаторами (обеспечение примембранных химических процессов).

    Участвуют в преобразовании энергии.

Похожие публикации