Какая точка называется центром масс тела. Центр масс тела. Равновесие. Масса тела

Любая механическая система так же, как и любое тело обладает такой замечательной точкой как центр масс. Она есть у человека, автомобиля, Земли, Вселенной, т. е. у любого предмета. Очень часто эту точку путают с центром тяжести. Несмотря на то что они часто друг с другом совпадают, у них есть определенные различия. Можно сказать, что центр масс механической системы - это более обширное понятие по сравнению с ее центром тяжести. Что же это такое и как найти его местоположение в системе или в отдельно взятом объекте? Об этом как раз и пойдет речь в нашей статье.

Понятие и формула определения

Центр масс представляет собой некую точку пересечения прямых, параллельно которым воздействуют внешние силы, вызывая при этом поступательное движение данного объекта. Это утверждение является справедливым как для отдельного взятого тела, так и для группы элементов имеющих между собой определенную связь. Центр масс всегда совпадает с центром тяжести и является одной из важнейших геометрических характеристик распределения всех масс в исследуемой системе. Обозначим через m i массу каждой точки системы (i = 1,…,n). Положение любой из них можно описать тремя координатами: x i , у i , z i . Тогда очевидно, что масса тела (всей системы) будет равна сумме масс ее частиц: М=∑m i . А сам центр масс (O) можно будет определить через следующие соотношения:

X o = ∑m i *x i /M;

Y o = ∑m i *y i /M;

Z o = ∑m i *z i /M.

Чем же интересна данная точка? Одно из главных ее достоинств - это то, что она характеризует движение объекта как целого. Это свойство позволяет использовать центр массы в тех случаях, когда тело имеет большие габариты или неправильную геометрическую форму.

Что следует знать для нахождения данной точки


Практическое применение

Рассматриваемое понятие широко используется в различных областях механики. Обычно центр масс используют в роли центра тяжести. Последний представляет собой такую точку, подвесив объект, за который, можно будет наблюдать неизменность его положения. Центр масс системы нередко рассчитывают при проектировании различных деталей в машиностроении. Он также играет большую роль в обеспечении равновесия, что можно применить, к примеру, при создании альтернативных вариантов мебели, транспортных средств, в строительстве, в складском хозяйстве и т. д. Без знания основных принципов, по которым определяется центр тяжести, было бы сложно организовать безопасность работ с массивными грузами и любыми габаритными предметами. Надеемся, что наша статья оказалась полезной и ответила на все вопросы по данной теме.

Инструкция

Следует учитывать, что положение центра масс напрямую зависит от того, каким образом распределена по объему тела его масса. Центр масс может даже не находиться в самом теле, примером такого объекта может служить однородное кольцо, у которого центр масс находится в его геометрическом центре. То есть – . При расчетах центр масс можно расценивать математической точкой, в которой сосредоточена вся масса тела.

Здесь R.ц.м. – радиус-вектор центра масс, mi – масса i-той точки, ri – радиус-вектор i-той точки системы. На практике во многих случаях легко найти центр масс, если предмет имеет некую строгую геометрическую форму. Например, у однородного стержня он находится точно посередине. У параллелограмма - на пересечении диагоналей, у треугольника это точка , а у правильного многоугольника центр масс находится в центре поворотной симметрии.

Для более сложных тел задача расчета усложняется, в этом случае необходимо разбить объект на однородные объемы. Для каждого из них отдельно центры масс, после чего найденные значения подставляются в соответствующие формулы и находится итоговое значение.

На практике необходимость определения центра масс (центра тяжести) обычно связана с конструкторскими работами. Например, при проектировании судна важно обеспечить его остойчивость. Если центр тяжести будет находиться очень , то может опрокинуться. Как рассчитать нужный параметр для такого сложного объекта, как судно? Для этого находятся центры тяжести его отдельных элементов и агрегатов, после чего найденные значения складываются с учетом их месторасположения. При конструировании центр тяжести обычно стараются расположить как можно ниже, поэтому наиболее тяжелые агрегаты располагают в самом низу.

Источники:

  • Центр масс
  • Решение задач по физике

Центр масс – важнейшая геометрическая и техническая характеристика тела. Без вычисления его координат невозможно представить конструирование в машиностроении, решение задач строительства и архитектуры. Точное определение координат центра массы производится с помощью интегрального исчисления.

Инструкция

Начинать всегда следует от , постепенно переходя к более сложным ситуациям. Исходите из того, что определению подлежит центр массы непрерывной плоской фигуры D, которой ρ постоянна и равномерно распределена в ее пределах. Аргумент х изменяется от а до b, y от c до d. Разбейте фигуру сеткой вертикальных (x=x(i-1), x=xi (i=1,2,…,n)) и горизонтальных прямых (y=y(j-1), y=xj (j=1,2,…,m)) на элементарные прямоугольники с основаниями ∆хi=xi-x(i-1) и высотами ∆yj=yj-y(j-1) (см. рис. 1). При этом середину элементарного отрезка ∆хi найдите как ξi=(1/2), а высоту ∆yj как ηj=(1/2). Поскольку плотность распределяется равномерно, то центр массы элементарного прямоугольника совпадет с ее геометрическим центром. То есть Хцi=ξi, Yцi=ηj.

Массу М плоской фигуры (если она неизвестна), вычислите как произведение на площадь. Замените элементарную площадь на ds=∆хi∆yj=dxdy. Представьте ∆mij в виде dM=ρdS=ρdxdy и получите ее массу по формуле, приведенной на рисунке. 2a. При малых приращениях считайте, что ∆mij, сосредоточена в материальной точке с координатами Хцi=ξi, Yцi=ηj. Из задач известно, что каждая координата центра масс системы материальных точек равна дроби, числитель которой сумму статических моментов масс mν относительно соответствующей оси, а равен сумме этих масс. Статический момент массы mν, относительно оси 0х равен уν*mν, а относительно 0у хν*mν.

Примените это к рассматриваемой ситуации и получите приблизительные значения статических моментов Јх и Ју в виде Ју≈{∑ξνρ∆xν∆yν}, Јх≈{∑ηνρ∆xν∆yν} (суммирование производилось по ν от 1 до N). Входящие в последнее выражения суммы являются интегральными. Перейдите к пределам от них при ∆хν→0 ∆yν→0 и запишите окончательные (см. рис. 2b). Координаты центра масс находите делением соответствующего статистического момента на общую массу фигуры М.

Методология получения координат центра масс пространственной фигуры G отличается лишь тем, что возникают тройные интегралы, а статические моменты рассматриваются относительно координатных плоскостей. Не следует забывать и что плотность не обязательно постоянна, то есть ρ(x,y,z)≠const. Поэтому окончательный и самйы общий имеет вид (см. рис. 3).

Источники:

  • Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.2., М.: 1976, 576 с., ил.

Закон всемирного тяготения, открытый Ньютоном в 1666 году и опубликованный в 1687 году, гласит, что все тела, обладающие массой, притягиваются друг к другу. Математическая формулировка позволяет не только установить сам факт взаимного притяжения тел, но и измерить его силу.

Инструкция

Еще до Ньютона многие высказывали предположения о существовании всемирного тяготения. С самого начала им было очевидно, что притяжение между любыми двумя телами должно зависеть от их массы и ослабевать с расстоянием. Иоганн Кеплер, первым описавший эллиптические орбиты Солнечной системы, считал, что Солнце притягивает с силой, обратно пропорциональной расстоянию.

Окончательно закон всемирного тяготения формулируется так: любые два тела, обладающие массой, взаимно притягиваются, и сила их притяжения равна

F = G* ((m1*m2)/R^2),

где m1 и m2 - массы тел, R - расстояние , G - гравитационная постоянная.

Если тело, участвующее в тяготении, обладает приблизительно сферической формой, то расстояние R следует отмерять не от его поверхности, а от центра масс. Материальная точка с той же массой, находящаяся точно в центре, порождала бы точно такую же силу притяжения.

В частности, это значит, что, например, при расчете силы, с которой Земля притягивает стоящего на ней , расстояние R равно не нулю, а радиусу . На самом деле оно равно расстоянию между центром Земли и центром тяжести человека, но этой разницей можно пренебречь без потери точности.

Гравитационное притяжение всегда взаимно: не только Земля притягивает человека, но , в свою очередь, притягивает Землю. Из-за огромной разницы между массой человека планеты это незаметно. Аналогично и при расчетах траекторий космических аппаратов обычно пренебрегают тем, что аппарат притягивает к себе планеты и кометы.

Однако если массы взаимодействующих объектов сравнимы, то их взаимное притяжение становится заметным для всех участников. Например, с точки зрения физики не вполне верно говорить, что Луна вращается вокруг Земли. В действительности Луна и Земля вращаются вокруг общего центра масс. Поскольку наша планета намного больше своего естественного , то этот центр находится внутри нее, но все же с центром самой Земли не совпадает.

Видео по теме

Источники:

  • Классная физика для любознательных - закон всемирного тяготения

Математика и физика, возможно, самые удивительные науки из доступных человеку. Описывая мир через вполне определенные и поддающиеся расчету законы, ученые могут «на кончике пера» получить значения, измерить которые, на первый взгляд, кажется невозможным.

Инструкция

Один из базовых законов физики – закон всемирного тяготения. Он гласит, что все тела притягиваются друг к другу с силой, равной F=G*m1*m2/r^2. При этом G является определенной константой (будет указана непосредственно во время расчета), m1 и m2 массы тел, а r –расстояние между ними.

Массу Земли можно вычислить на основе эксперимента. При помощи маятника и секундомера можно рассчитать ускорение свободного падения g (шаг будет опущен за несущественностью), равное 10 м/c^2. Согласно второму закону Ньютона F можно представить как m*a. Поэтому, для тела, притягивающегося к Земле: m2*a2=G*m1*m2/r^2, где m2 – масса тела, m1 – масса Земли, a2=g. После преобразований (сокращения m2 в обеих частях, переноса m1 влево, а a2 - вправо) уравнение примет следующий вид: m1=(ar)^2/G. Подстановка значений дает m1=6*10^27

Расчет массы Луны опирается на правило: от тел до центра масс системы обратно пропорциональны массам тел. Известно, что Земля и Луна обращаются вокруг некоторой точки (Цм), причем расстояния от центров до этой точки как 1/81,3. Отсюда Мл=Мз/81,3=7.35*10^25.

Дальнейшие вычисления опираются на 3-ий закон Кепплера, согласно которому (T1/T2)^2*(M1+Mc)/(M2+Mc)=(L1/L2)^3, где T – период обращения небесного тела вокруг Солнца , L – расстояние до последнего, M1, M2 и Mc – массы двух небесных тел и , соответственно. Составив уравнения для двух систем ( +луна – / земля - луна) можно увидеть, что одна часть уравнения получается общей, а значит, вторые можно приравнять.

Расчетной формулой в наиболее общем виде является Lз^3/(Tз^2*(Mc+Мз)=Lл^3/(Tл^2*(Mз+Мл). Массы небесных тел были вычислены теоретически, периоды обращения находятся практически, для расчета L используются исчисления либо практические методы. После упрощения и подстановки необходимых значений уравнение примет вид: Мс/Мз+Мл=329.390. Отсюда Мс=3,3*10^33.

Кинетическая энергия – это энергия механической системы, которая зависит от скоростей движения каждой из ее точек. Другими словами, кинетическая энергия представляет собой разницу между полной энергией и энергией покоя рассматриваемой системы, та часть полной энергии системы, которая обусловлена движением. Кинетическая энергия делится на энергию поступательного и вращательного движения. Единицей измерения кинетической энергии в системе СИ является Джоуль.

Инструкция

В случае поступательного движения все точки системы (тела) имеют одинаковые скорости движения, которые равны скорости движения центра масс тела. При этом кинетическая системы Тпост равна:
Tпост = ? (mk Vс2)/2,
где mk –масса тела, Vс – центра масс.Таким образом, при поступательном тела кинетическая энергия равна произведению массы тела на квадрат скорости центра масс, деленному на два. При этом значение кинетической не зависит от движения.

Существует множество различных конструкций и сооружений, смотря на которые, удивляешься, как они сохраняют равновесие. Самое, пожалуй, известное из них – знаменитая Пизанская башня, построенная ещё в 1360 году и сохраняющая свой непреднамеренный наклон. Почему же Пизанская башня сохраняет равновесие? Секрет прост. Вертикальная проекция центра масс башни находится на её основании. Это справедливо и для любого другого сооружения. Кроме того, если какой-либо предмет подвесить за точку, которая совпадает с центром масс, то подвешенный предмет тоже будет сохранять равновесие. Можно также собирать из различных предметов конструкции самой причудливой формы, которые будут находиться в равновесии, если правильно рассчитать местоположение центра масс. Давайте попробуем разобраться, как рассчитывать координаты центра масс различных плоских фигур.

Предположим, что Вы решили сделать новогоднюю гирлянду, состоящую из различных фигур, в том числе в форме стрелки. Сначала нужно вырезать из плотной бумаги с новогодним рисунком равнобедренный треугольник. Потом нужно сделать вырез тоже в форме равнобедренного треугольника так, чтобы центр масс получившейся фигуры оказался в точке В (см.рисунок). Найдем координаты x c и y c центра масс этой фигуры в прямоугольной системе координат yOx .

Положение центра масс плоских фигур известно: центр масс треугольника находится в точке пересечения его медиан, центр масс прямоугольника находится в точке пересечения его диагоналей, центр масс круга совпадает с его центром. Так как треугольник ACD – равнобедренный, то, исходя из его симметрии относительно прямой ОА , следует, что x c = 0 .

Для расчета координаты y c воспользуемся следующей формулой:

где S ΔACD и S ΔBCD – площади треугольников ACD и BCD , а y c 1 и y c 2 – координаты их центров масс, соответственно. Тогда:

Учитывая, что центр масс должен находиться в точке B , получаем:

|OB | = ½ |OA | . То есть точка B – середина отрезка |OA |.

По предложенному методу мы предлагаем вам решить задачу:

Рассчитайте координаты центра масс круга радиуса R с вырезанным кругом радиуса r (см. рисунок). Определите, каким должен быть отношение радиусов R и r , чтобы центр масс фигуры находился в точке B . Проанализируйте результат.

Движение системы, кроме действующих сил, зависит также от её суммарной массы и распределения масс. Масса системы равна арифметической сумме масс всех точек или тел, образующих систему

В однородном поле тяжести, для которого , вес любой частицы тела будет пропорционален ее массе. Поэтому о распределении масс в теле можно судить по положению его центра тяжести. Преобразуем формулы, определяющие координаты центра тяжести:

, , . (1)

В полученные равенства входят только массы материальных точек (частиц), образующих тело, и координаты этих точек. Следовательно, положение точки С (x C , y C , z C) действительно харак­теризует распределение масс в теле или в любой механической си­стеме, если под , понимать соответственно массы и координаты точек этой системы.

Геометрическая точка С , координаты которой определяются указанными формулами, называется центром масс или центром инерции системы.

Положение центра масс определяется его радиус-вектором

где - радиус-векторы точек, образующих систему.

Хотя положение центра масс совпадает с положением центра тя­жести тела, находящегося в однородном поле тяжести, понятия эти не являются тождественными. Понятие о центре тяжести, как о точке, через которую проходит линия действия равнодействующей сил тя­жести, по существу имеет смысл только для твердого тела, находя­щегося в однородном поле тяжести. Понятие же о центре масс, как о характеристике распределения масс в системе, имеет смысл для любой системы материальных точек или тел, причем, это понятие сохраняет свой смысл независимо от того, находится ли данная си­стема под действием каких-нибудь сил или нет.

Момент инерции тела относительно оси. Радиус инер­ции.

Положение центра масс характеризует распределение масс системы не полностью. Например (рис.32), если расстояния h от оси Oz каждого из одинаковых шаров А и В увеличить на одну и ту же величину, то положение центра масс системы не изменится, а распределение масс станет другим, и это скажется на движении системы (вращение вокруг оси Oz при прочих равных условиях будет происходить медленнее).

Рис.32

Поэтому в механике вводится еще одна характеристика распре­деления масс - момент инерции. Моментом инерциитела (системы) относительно данной оси Oz (или осевым моментом инерции) называется скалярная величина, равная сумме произведений масс всех точек тела (системы) на квадраты их расстояний от этой оси

Из определения следует, что момент инерции тела (или системы) относительно любой оси является величиной положительной и не равной нулю.

Заметим также, что момент инерции тела – это геометрическая характеристика тела, не зависящая от его движения.


Осевой момент инерции играет при вращательном движении тела такую же роль, какую масса при поступательном, т.е. что осевой момент инерции является ме­рой инертности тела при вра­щательном движении.

Согласно формуле момент инерции тела равен сумме момен­тов инерции всех его частей от­носительно той же оси. Для од­ной материальной точки, нахо­дящейся на расстоянии h от оси, .

Часто в ходе расчетов пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси Оz называется линейная величина , определяемая равенством

где М - масса тела. Из определения следует, что радиус инерции геометрически равен расстоянию от оси Оz той точки, в которой надо сосредоточить массу всего тела, чтобы момент инерции одной этой точки был равен моменту инерции всего тела.

В случае сплошного те­ла, разбивая его на элементарные части, найдем, что в пределе сумма, стоящая в равенстве , обратится в интеграл. В результате, учи­тывая, что , где - плотность, а V- объем, получим

Интеграл здесь распространяется на весь объем V тела, а плотность и расстояние h зависят от координат точек тела.

Моменты инерции некоторых однородных тел:

1.Тонкий однородный стержень длины l и массы М. Вычислим его момент инерции относи­тельно оси Аz, перпендикулярной к стержню и прохо­дящей через его конец А (рис. 33).

Рис.33

Направим вдоль АВ координатную ось Ах. Тогда для любого элементарного отрезка длины dx величина h=x, а масса , где - масса единицы длины стержня. В результате

Заменяя здесь его значением, найдем окончательно:

2. Тонкое круглое однородное кольцо радиуса R и массы М. Найдем его момент инерции относительно оси Cz, перпендикулярной плоскости кольца и проходящей через его центр (рис.34,а). Так как все точки кольца находятся от оси Cz на расстоянии h k =R, то

Следовательно, для кольца

Очевидно, такой же результат получится для момента инерции тонкой цилиндрической оболочки массы М и радиуса R относитель­но ее оси.

3. Круглая однородная пластина или цилиндр ра­диуса R и массы М. Вычислим момент инерции круглой пла­стины относительно оси Сz, перпендикулярной к пластине и прохо­дящей через ее центр (см. рис.34,а ). Для этого выделим элементарное кольцо радиуса r и ширины dr (рис.34,б ).

Центр масс это геометрическая точка находящаяся внутри тела, которая определяет распределение массы этого тела. Любое тело можно представить в виде суммы некоторого количества материальных точек. В этом случае положение центра масс определяет радиус вектор.

Формула 1 - Радиус вектора центра масс.


mi - масса итой точки.

ri - радиус вектор итой точки.

Если просуммировать массы всех материальных точек, то получится масса всего тела. На положение центра масс влияет однородность распределения массы по объему тела. Центр масс может находиться как внутри тела, так и за его приделами. Скажем у кольца, центр масс находится в центре окружности. Там где нет вещества. В общем, для симметричных тел обладающих однородным распределением массы центр масс всегда находится в центре симметрии или на ее оси.

Рисунок 1 - Центры массы симметричных тел.


Если к телу прикладывать некоторую силу, то оно начнет двигаться. Представьте себе кольцо, лежащее на поверхности стола. Если к нему приложить силу, а попросту начать толкать, то оно будет скользить по поверхности стола. А вот направление движения будет завесить от места приложения силы.

Если силу направить от внешнего края к центру, по перпендикуляру к внешней поверхности, то кольцо начнет прямолинейно двигаться по поверхности стола в направлении приложения силы. Если же силу приложить по касательной к внешнему радиусу кольца, то оно начнет поворачиваться относительно своего центра масс. Таким образом, можно заключить, что движение тела состоит из суммы поступательного движения и вращательного относительно центра масс. То есть движение любого тела можно описать движением материальной точки находящейся в центре масс и имеющей массу всего тела.

Рисунок 2 - Поступательное и вращательное движение кольца.


Существует также понятие центр тяжести. В общем, это не одно и то же что и центр масс. Центр тяжести это точка относительно, которой общий момент силы тяжести равен нулю. Если представить себе стержень длинной скажем 1 метр, диаметром 1см, и однородный по своему сечению. На концах стержня закреплены металлические шары одинаковой массы. То центр масс этого стержня будет находиться посередине. Если этот стержень поместить в неоднородное гравитационное поле, то центр тяжести будет смещён в сторону большей напряжённости поля.

Рисунок 3 - Тело в неоднородном и однородном гравитационном поле.


На поверхности земли, где сила тяжести однородна, центр масс практически совпадает с центром тяжести. Для любого постоянного однородного гравитационного поля центр тяжести всегда будет совпадать с центром масс.

Похожие публикации