Магнитное поле витка с током формула. Магнитное поле в центре кругового проводника с током

Рассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющему форму окружности радиуса R (круговой ток). Определим магнитную индукцию в центре кругового тока (рис. 47.1).

Каждый элемент тока создает в центре индукцию, направленную вдоль положительной нормали к контуру. Поэтому векторное сложение сводится к сложению их модулей. По формуле (42.4)

Проинтегрируем это выражение по всему контуру:

Выражение в скобках равно модулю дипольного магнитного момента (см. (46.5)).

Следовательно, магнитная индукция в центре кругового тока имеет величину

Из рис. 47.1 видно, что направление вектора В совпадает с направлением положительной нормали к контуру, т. е. с направлением вёктора Поэтому формулу (47.1) можно написать в векторном виде:

Теперь найдем В на оси кругового тока на расстоянии от центра контура (рис. 47.2). Векторы перпендикулярны к плоскостям, проходящим через соответствующий элемент и точку, в которой мы ищем поле. Следовательно, они образуют симметричный конический веер (рис. 47.2, б). Из соображений симметрии можно заключить, что результирующий вектор В направлен вдоль оси контура. Каждый из составляющих векторов вносит в результирующий вектор вклад равный по модулю Угол а между и b прямой, поэтому

Проинтегрировав по всему контуру и заменив на получим

Эта формула определяет величину магнитной индукции на оси кругового тока. Приняв во внимание, что векторы В и имеют одинаковое направление, можно написать формулу (47.3) в векторном виде:

Это выражение не зависит от знака г. Следовательно, в точках оси, симметричных относительно центра тока, В имеет одинаковую величину и направление.

При формула (47.4) переходит, как и должно быть, в формулу (47.2) для магнитной индукции в центре кругового тока.

На больших расстояниях от контура в знаменателе можно пренебречь по сравнению с Тогда формула (47.4) принимает вид

аналогичный выражению (9.9) для напряженности электрического поля на оси диполя.

Расчет, выходящий за рамки данной книги, дает, что любой системе токов или движущихся зарядов, локализованной в ограниченной части пространства, можно приписать магнитный дипольный момент (ср. с дипольным электрическим моментом системы зарядов). Магнитное поле такой системы на расстояниях, больших по сравнению с ее размерами, определяется через по таким же формулам, по каким определяется через дипольный электрический момент поле системы зарядов на больших расстояниях (см. § 10). В частности, поле плоского контура любой формы на больших расстояниях имеет вид

где - расстояние от контура до данной точки, - угол между направлением вектора и направлением от контура в данную точку поля (ср. с формулой (9.7)). При формула (47.6) дает для модуля вектора В такое же значение, как и формула (47.5).

На рис. 47.3 изображены линии магнитной индукции поля кругового тока. Показаны лишь линии, лежашие в одной из плоскостей, Проходящей через ось тока. Подобная же картина имеет место в любой из этих плоскостей.

Из всего сказанного в предыдущем и в данном параграфах вытекает, что дипольный магнитный момент является весьма важной характеристикой контура с током. Этой характеристикой определяется как поле, создаваемое контуром, так и поведение контура во внешнем магнитном поле.

Пусть в плоскости YZ располагается проволочный виток радиуса R, по которому течёт ток силы Á. Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие: Поляризация света.Волновая оптика

Общая картина силовых линий тоже просматривается (рис.7.10). Сложение гармонических колебаний Если система участвует одновременно в нескольких колебательных процессах, то под сложением колебаний понимают нахождение закона, описывающий результиующий колебательный процесс.

По идее, нас интересовало бы поле , но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х,0,0).

Направление вектора определяется векторным произведением . Вектор имеет две составляющие: и . Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль. . А теперь пишем: , = , а . , и, наконец1), .

Мы добыли такой результат:

А теперь, в качестве проверки, поле в центре витка равна: .

Работа, совершаемая при перемещении контура с током в магнитном поле.

Рассмотрим отрезок проводника с током, способный свободно перемещаться по двум направляющим во внешнем магнитном поле (рис.9.5). Магнитное поле будем считать однородным и направленным под углом α по отношению к нормали к плоскости переме-щения проводника.

Рис.9.5 . Отрезок проводника с током в однородном магнитном поле.

Как видно из рис.9.5, вектор имеет две составляющие и , из которых только составляющая создает силу, действующую в плоскости перемещения проводника. По абсолютной величине эта сила равна:

,

где I – сила тока в проводнике; l – длина проводника; B – индукция магнитного поля.

Работа этой силы на элементарном пути перемещения ds есть:

Произведение lds равно площади dS , заметанной проводником при движении, а величинаBdScosα равна потоку магнитной индукции через эту площадь. Следовательно, можем написать:

dA=IdФ .

Рассматривая отрезок проводника с током как часть замкнутого контура и интегрируя это соотношение, найдем работу при перемещении контура с током в магнитном поле:

A = I(Ф 2 – Ф 1)

где Ф 1 и Ф 2 обозначают поток индукции магнитного поля через площадь контура соответственно в начальном и конечном положениях.

Движение заряженных частиц

Однородном магнитном поле

Рассмотрим частный случай, когда нет электрического поля, но имеется магнитное поле. Предположим, что частица, обладающая начальной скоростью u0, попадает в магнитное поле с индукцией B. Это поле мы будем считать однородным и направленным перпендикулярно к скорости u0.

Основные особенности движения в этом случае можно выяснить, не прибегал к полному решению уравнений движения. Прежде всего, отметим, что действующая на частицу сила Лоренца всегда перпендикулярна к скорости движения частицы. Это значит, что работа силы Лоренца всегда равна нулю; следовательно, абсолютное значение скорости движения частицы, а значит, и энергия частицы остаются постоянными при движении. Так как скорость частицы u не изменяется, то величина силы Лоренца

остается постоянной. Эта сила, будучи перпендикулярной, к направлению движения, является центростремительной силой. Но движение под действием постоянной по величине центростремительной силы есть движение по окружности. Радиус r этой окружности определяется условием

Если энергия электрона выражена в эВ и равна U, то

(3.6)

и поэтому

Кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: время полного обращения частицы по окружности (период движения) не зависит от энергии частицы. Действительно, период обращения равен

Подставляя сюда вместо r его выражение по формуле (3.6), имеем:

(3.7)

Частота же оказывается равной

Для данного типа частиц и период, и частота зависят только от индукции магнитного поля.

Выше мы предполагали, что направление начальной скорости перпендикулярно к направлению магнитного поля. Нетрудно сообразить, какой характер будет иметь движение, если начальная скорость частицы составляет некоторый угол с направлением поля.
В этом случае удобно разложить скорость на две составляющие, одна из которых параллельна полю, а другая перпендикулярна к полю. На частицу действует сила Лоренца, и частица движется по окружности, лежащей в плоскости, перпендикулярной к полю. Составляющая Ut, не вызывает появления добавочной силы, так как сила Лоренца при движении параллельно полю равна нулю. Поэтому в направлении поля частица движется по инерции равномерно, со скоростью

В результате сложения обоих движений частица будет двигаться по цилиндрической спирали.

Шаг винта этой спирали равен

подставляя вместо T его выражение (3.7), имеем:

Эффе́кт Хо́лла - явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота. Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через металлический брус в слабом магнитном поле течёт электрический ток под действиемнапряжённости . Магнитное поле будет отклонять носители заряда (для определённости электроны) от их движения вдоль или против электрического поля к одной из граней бруса. При этом критерием малости будет служить условие, что при этом электрон не начнёт двигаться по циклоиде.

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного - возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов не скомпенсирует магнитную составляющую силы Лоренца:

Скорость электронов можно выразить через плотность тока:

где - концентрация носителей заряда. Тогда

Коэффициент пропорциональности между и называется коэффициентом (или константой ) Холла . В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их тип для большого числа металлов. Для некоторых металлов (например, таких, как свинец, цинк, железо, кобальт, вольфрам), в сильных полях наблюдается положительный знак , что объясняется в полуклассической и квантовой теориях твёрдого тела.

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа [источник не указан 111 дней ] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Значение магнитной индукции для любого проводника определяется законом Био - Савара - Лапласа.

-в векторной форме, (15.6)

- в скалярной форме. (15.7)

Вектор всегда перпендикулярен плоскости, построенной на векторах и . С помощью закона Био - Савара - Лапласа рассчитаем магнитную индукцию поля прямого, кругового и соленоидального токов.

Вывод формулы напряжённости магнитного поля прямого тока (рис. 15.9; рис. 15.10) .

Применим формулу
для вычисления полей простейших токов. Рассмотрим поле, создаваемое током, текущим по бесконечному прямому проводу (Рис. 15.9) .Все dBв данной точке имеют одинаковое направление. Поэтому сложение векторов dBможно заменить сложением их модулей. Точка, для которой мы вычисляем магнитную индукцию, находится на расстоянии b от провода. Из рисунка 15.9 видно, что:

Подставим эти значения в формулу магнитной индукции:

.

Угол для всех элементов бесконечно прямого тока изменяется в пределах от 0 до . Следовательно:

.

Таким образом, магнитная индукция поля прямого тока определяется формулой: . (15.8)

Для того, чтобы получить напряженность магнитного поля, необходимо разделить правую часть формулы (15.8) на :

. (15.9)

Вывод формулы напряжённости магнитного поля кругового тока (рис. 15.11).



Рассмотрим поле, создаваемое током, текущим по тонкому проводу, имеющему форму окружности (круговой ток). Определим магнитную индукцию кругового тока

Рассмотрим индукции , создаваемых двумя элементами контура dl 1 и dl 2 . Т. к. угол между r и dl равен 90°, то sin 90°=1.

Закон Био - Савара - Лапласа для двух элементов:

Выбрав dl 1 =dl 2 и принимая, что r 1 =r 2 , получим:

Проинтегрируем это выражение по всему контуру и заменим r на получим:

(15.10)

В частности, при x=0 имеем:

(15.11)

магнитная индукция в центре кругового тока

Напряженность магнитного поля в центре кругового тока равна:

(15.12)

Формула для расчета напряженности магнитного поля кругового тока на его оси принимает вид:

(15.13)

Вывод формулы напряжённости магнитного поля соленоидального тока.

Соленоид представляет собой тонкий провод, навитый плотно, виток к витку, на цилиндрический каркас. В отношении создаваемого им поля соленоид эквивалентен системе одинаковых круговых токов с общей прямой осью. Бесконечно длинный соленоид симметричен относительно любой перпендикулярной к его оси плоскости. Взятые попарно симметричные относительно такой плоскости витки создают поле, магнитная индукция которого перпендикулярна к плоскости. Следовательно, в любой точке внутри и вне соленоида вектор может иметь лишь направление, параллельное оси.

Возьмем прямоугольный контур 1-2-3-4. Циркуляцию вектора по этому контуру можно представить следующим образом:

Из четырех интегралов, стоящих в правой части, второй и четвертый равны нулю, так как вектор перпендикулярен к участкам контура, по которым они берутся.

Взяв участок 3-4 на большом расстоянии от соленоида(где поле заведомо должно быть очень слабым), третьим слагаемым можно пренебречь. Следовательно, можно утверждать, что:

Здесь В - магнитная индукция поля в тех точках, где располагается отрезок 1-2, -длина этого отрезка.

Если отрезок 1-2 проходит внутри соленоида на любом расстоянии от его оси, контур охватывает суммарный ток , где - число витков соленоида, приходящееся на единицу его длинны, - сила тока в соленоиде. Поэтому согласно:

Откуда: (15.14)

а напряженность магнитного поля соленоидального тока равна:

(15.15)

Отметим, что полученный нами результат не зависит от того, на каком расстоянии от оси (но внутри соленоида) располагается отрезок 1-2. Если этот отрезок располагается вне соленоида, то охватываемый контуром ток равен нулю, вследствие чего:

.

Откуда В=0. Таким образом, вне бесконечного длинного соленоида магнитная индукция равна нулю, внутри - всюду одинакова и имеет величину, определяемую формулой (15.14). По этой причине в учении о магнетизме бесконечно длинный соленоид играет такую же роль, как плоский конденсатор в учении об электричестве. В обоих случаях поле однородно и полностью заключено внутри конденсатора (электрическое) и внутри соленоида(магнитное).

Произведение называется числом ампер - витков на метр.

Тесты к лекции №15

Тест 15.1.Магнитная индукция поля, создаваемого отрезком бесконечно тонкого прямолинейного проводника, вычисляется по формуле…

£

£

£

£

Тест 15.2.Магнитная индукция в центре кругового тока определяется по формуле…

£

£

£

£

Тест 15.3.Форма существования материи, обладающая свойством передавать магнитное взаимодействие.

£ магнитное поле

£ магнитная индукция

£ пробный контур

£ магнитный момент

Тест 15.4.Дайте определение пробного контура.

£ контур, вносящий помехи в исходное поле.

£ контур, усиливающий исходное поле.

£ контур, ослабляющий исходное поле.

£ контур, который не создает заметных искажений исходного поля.

Тест 15.5.Формула выражает:

£ вектор магнитной индукции

£ напряженность магнитного поля

£ магнитную индукцию

£ магнитный момент

Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток. Сила Ампера. Работа по перемещению проводника с током в магнитном поле. Сила Лоренца. Определение удельного заряда электрона

16.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток

16.2. Сила Ампера

16.3. Работа по перемещению проводника с током в магнитном поле

16.4. Сила Лоренца

16.5. Определение удельного заряда электрона

что линии магнитной индукции поля кругового тока не являются правильными окружностями, они замыкаются, обходя проводник, по которому идет ток. Направление линий магнитной индукции можно определить с помощью правила правого винта (правило буравчика): если головку винта вращать в направлении тока в проводнике, то поступательное движение острия винта покажет направление магнитной индукции в центре кругового тока .

Закон Био́-Савара-Лапла́са - физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.

При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии r0, от контура магнитная индукция будет иметь вид.

Где I ток в контуре гамма контур, по которому идет интегрирование r0 произвольная точка

Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл:

,

где - проекция вектора на направление касательной к линии контура в данной точке.

Соответствующий интеграл для электрического поля в электростатике, как мы знаем, равен нулю, что отражает свойство потенциальности электростатического поля:

Магнитное поле не является потенциальным , оно, как было показано выше, является соленоидальным. Поэтому следует ожидать, что циркуляция магнитного поля вдоль замкнутого контура в общем случае отлична от нуля. Чтобы найти ее величину, выполним сначала некоторые вспомогательные действия.

Поле соленоида и тороидаСоленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на сердечник. Тороид можно рассматривать как длинный соленоид, свернутый в кольцо

внутри соленоида поле однородно, а вне соленоида не однородно и очень слабое (можно считать, равным нулю).

Циркуляция вектора В по замкнутому контуру, совпадающему с одной из линий магнитной индукции, охватывающему все N витков, согласно (4.12) равна: .

Магнитное поле внутри тороида, так же, как в соленоиде, однородно, сосредоточено внутри; вне тороида магнитное поле, создаваемое круговыми токами тороида, равно нулю. Величина магнитного поля в тороиде определяется выражением причем длина тороида l берется по средней длине тороида (среднему диаметру).

Выражение для силы Ампера можно записать в виде: F = qnSΔlυB sin α. Взаимодействие параллельных токов Одним из важных примеров магнитного взаимодействия токов является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

Где μ0 – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

Магни́тный пото́к - поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади.

Рассмотрим поле, создаваемое током I , текущим по тонкому проводу, имеющему форму окружности радиуса R .

Определим магнитную индукцию на оси проводника с током на расстоянии х от плоскости кругового тока. Векторы перпендикулярны плоскостям, проходящим через соответствующие и . Следовательно, они образуют симметричный конический веер. Из соображения симметрии видно, что результирующий вектор направлен вдоль оси кругового тока. Каждый из векторов вносит вклад равный , а взаимно уничтожаются. Но , , а т.к. угол между и α – прямой, то тогда получим

,

Подставив в и, проинтегрировав по всему контуру , получим выражение для нахождения магнитной индукции круговоготока :

,

При , получим магнитную индукцию в центре кругового тока :

Заметим, что в числителе – магнитный момент контура. Тогда, на большом расстоянии от контура, при , магнитную индукцию можно рассчитать по формуле:

Силовые линии магнитного поля кругового тока хорошо видны в опыте с железными опилками

Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.



Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

Величину магнитного момента кругового витка с током можно определить по формуле.

Похожие публикации