Виды движения тела в физике. Что такое механическое движение в физике определение

Механика – раздел физики, в котором изучают механическое движение.

Механику подразделяют на кинематику, динамику и статику.

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения. Кинематика изучает способы описания движения и связь между величинами, характеризующими эти движения.

Задача кинематики: определение кинематических характеристик движения (траектории движения, перемещения, пройденного пути, координаты, скорости и ускорения тела), а также получение уравнений зависимости этих характеристик от времени.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Механическое движение относительно , выражение «тело движется» лишено всякого смысла, пока не определено, относительно чего рассматривается движение. Движение одного и того же тела относительно разных тел оказывается различным. Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета . Покой тоже относителен (примеры: пассажир в покоящемся поезде смотрит на проходящий мимо поезд)

Главная задача механики уметь вычислять координаты точек тела в любой момент времени.

Чтобы решить эту надо иметь тело, от которого ведется отсчет координат, связать с ним систему координат и иметь прибор для измерения промежутков времени.

Система координат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют систему отсчета , относительно которой и рассматривается движение тела.

Системы координат бывают:

1. одномерная – положение тела на прямой определяется одной координатой x.

2. двумерная – положение точки на плоскости определяется двумя координатами x и y.

3. трехмерная – положение точки в пространстве определяется тремя координатами x, y и z.

Всякое тело имеет определенные размеры. Различные части тела находятся в разных местах пространства. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать его материальной точкой. Так можно поступать, например, при изучении движения планет вокруг Солнца.

Если все части тела движутся одинаково, то такое движение называется поступательным.

Поступательно движутся, например, кабины в аттракционе «Гигантское колесо», автомобиль на прямолинейном участке пути и т. д. При поступательном движении тела его также можно рассматривать как материальную точку.

Материальной точкой называется тело, размерами которого в данных условиях можно пренебречь .

Понятие материальной точки играет важную роль в механике. Тело можно рассматривать как материальную точку, если его размеры малы по сравнению с расстоянием, которое оно проходит, или по сравнению с расстоянием от него до других тел.

Пример. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись.

Характеристики механического движения: перемещение, скорость, ускорение.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела.

Линия, по которой движется точка тела, называется траекторией движения.

Длина траектории называется пройденным путем.

Обозначается l, измеряется в метрах . (траектория – след, путь – расстояние)

Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь скалярная величина .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение есть векторная величина.

Вектор, соединяющий начальную и конечную точки траектории, называется перемещением.

Обозначается S , измеряется в метрах.(перемещение – вектор, модуль перемещения – скаляр)

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка.

Обозначается v

Формула скорости: или

Единица измерения в СИ – м/с .

На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с).

Измеряют скорость спидометром .

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

Ускорение измеряют акселерометром

Единица измерения в СИ м/с 2

Таким образом, основными физическими величинами в кинематике материальной точки являются пройденный путь l, перемещение, скорость и ускорение. Путь l является скалярной величиной. Перемещение, скорость и ускорение – величины векторные. Чтобы задать векторную величину, нужно задать ее модуль и указать направление. Векторные величины подчиняются определенным математическим правилам. Вектора можно проектировать на координатные оси, их можно складывать, вычитать и т. д.

Механическое движение – это изменение положения тела в пространстве относительно других тел.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения . Далее кратко рассмотрим основные виды механического движения .

Поступательное движение – это движение тела, при котором все его точки движутся одинаково.

Например, всё тот же автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Упоминавшиеся нами колёса совершают вращательное движение вокруг своих осей, и в то же время колёса совершают поступательное движение вместе с кузовом автомобиля. То есть относительно оси колесо совершает вращательное движение, а относительно дороги – поступательное.

Колебательное движение – это периодическое движение, которое совершается поочерёдно в двух противоположных направлениях.

Например, колебательное движение совершает маятник в часах.

Поступательное и вращательное движения – самые простые виды механического движения.

Относительность механического движения

Все тела во Вселенной движутся, поэтому не существует тел, которые находятся в абсолютном покое. По той же причине определить движется тело или нет, можно только относительно какого-либо другого тела.

Например, автомобиль движется по дороге. Дорога находится на планете Земля. Дорога неподвижна. Поэтому можно измерить скорость автомобиля относительно неподвижной дороги. Но дорога неподвижна относительно Земли. Однако сама Земля вращается вокруг Солнца. Следовательно, дорога вместе с автомобилем также вращается вокруг Солнца. Следовательно, автомобиль совершает не только поступательное движение, но и вращательное (относительно Солнца). А вот относительно Земли автомобиль совершает только поступательное движение. В этом проявляется относительность механического движения .

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта .

Материальная точка

Во многих случаях размером тела можно пренебречь, так как размеры этого тела малы по сравнению с расстоянием, которое походит это тело, или по сравнению с расстоянием между этим телом и другими телами. Такое тело для упрощения расчетов условно можно считать материальной точкой, имеющей массу этого тела.

Материальная точка – это тело, размерами которого в данных условиях можно пренебречь.

Многократно упоминавшийся нами автомобиль можно принять за материальную точку относительно Земли. Но если человек перемещается внутри этого автомобиля, то пренебрегать размерами автомобиля уже нельзя.

Как правило, решая задачи по физике, рассматривают движение тела как движение материальной точки , и оперируют такими понятиями, как скорость материальной точки, ускорение материальной точки, импульс материальной точки, инерция материальной точки и т.п.

Система отсчёта

Материальная точка движется относительно других тел. Тело, по отношению к которому рассматривается данное механическое движение, называется телом отсчёта. Тело отсчёта выбирают произвольно в зависимости от решаемых задач.

С телом отсчёта связывается система координат , которая представляет из себя точку отсчёта (начало координат). Система координат имеет 1, 2 или 3 оси в зависимости от условий движения. Положение точки на линии (1 ось), плоскости (2 оси) или в пространстве (3 оси) определяют соответственно одной, двумя или тремя координатами. Для определения положения тела в пространстве в любой момент времени также необходимо задать начало отсчёта времени.

Система отсчёта – это система координат, тело отсчета, с которым связана система координат, и прибор для измерения времени. Относительно системы отсчёта и рассматривается движение тела. У одного и того же тела относительно разных тел отсчёта в разных системах координат могут быть совершенно различные координаты.

Траектория движения также зависит от выбора системы отсчёта.

Виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта.

статья взята с сайта av-physics.narod.ru

Механическое движение

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.

Раздел механики, описывающий геометрические свойства движения без учёта причин, его вызывающих, называется кинематикой.

В более общем значении движением называется изменение состояния физической системы с течением времени. Например, можно говорить о движении волны в среде.

Виды механического движения

Механическое движение можно рассматривать для разных механических объектов:

  • Движение материальной точки полностью определяется изменением её координат во времени (например, двух на плоскости). Изучением этого занимается кинематика точки. В частности, важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение.
    • Прямолинейное движение точки (когда она всегда находится на прямой, скорость параллельна этой прямой)
    • Криволинейное движение �- движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например, движение по окружности).
  • Движение твёрдого тела складывается из движения какой-либо его точки (например, центра масс) и вращательного движения вокруг этой точки. Изучается кинематикой твёрдого тела.
    • Если вращение отсутствует, то движение называется поступательным и полностью определяется движением выбранной точки. Движение при этом не обязательно является прямолинейным.
    • Для описания вращательного движения �- движения тела относительно выбранной точки, например закреплённого в точке,�- используют Углы Эйлера. Их количество в случае трёхмерного пространства равно трём.
    • Также для твёрдого тела выделяют плоское движение �- движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела�- положением любых двух точек.
  • Движение сплошной среды . Здесь предполагается, что движение отдельных частиц среды довольно независимо друг от друга (обычно ограничено лишь условиями непрерывности полей скорости), поэтому число определяющих координат бесконечно (неизвестными становятся функции).

Геометрия движения

Относительность движения

Относительность�- зависимость механического движения тела от системы отсчёта. Не указав систему отсчёта, не имеет смысла говорить о движении.

Понятие механики . Механика – это часть физики, в которой изучают движение тел, взаимодействие тел или, движение тел под каким-либо взаимодействием.

Главная задача механики – это определение местоположения тела в любой момент времени.

Разделы механики: кинематика и динамика . Кинематика – это раздел механики, изучающий геометрические свойства движений без учета их масс и действующих на них сил. Динамика – это раздел механики, изучающий движение тел под действием приложенных к ним сил.

Движение. Характеристики движения . Движение – это изменение положения тела в пространстве с течением времени относительно других тел. Характеристики движения: пройденный путь, перемещение, скорость, ускорение.

Механическое движение это изменение положение тела (или его частей) в пространстве относительно других тел с течением времени.

Поступательное движение

Равномерное движение тела . Демонстрируется видеопоказом с объяснениями.

Неравномерное механическое движение – это движение, при котором за равные промежутки времени тело совершает неравные перемещения.

Относительность механического движения . Демонстрируется видеопоказом с объяснениями.

Точка отсчёта и система отсчёта в механическом движении . Тело, относительно которого рассматривается движение, называется точкой отсчёта. Система отсчёта в механическом движении – это точка отсчёта и система координат и часами.

Система отсчета. Характеристики механического движения . Система отсчета демонстрируется видеопоказом с объяснениями. Механическое движение имеет характеристики: Траектория; Путь; Скорость; Время.

Траектория прямолинейного движения – это линия, вдоль которой движется тело.

Криволинейное движение . Демонстрируется видеопоказом с объяснениями.

Путь и понятие скалярной величины . Демонстрируется видеопоказом с объяснениями.

Физические формулы и единицы измерения характеристик механического движения:

Обозначение величины

Единицы измерения величины

Формула для определения величины

Путь -s

м, км

S = vt

Время- t

с, час

T = s/v

Скорость - v

м/с, км/ч

V = s / t

П онятие ускорения . Раскрывается демонстрацией видеопоказа, с объяснениями.

Формула для определения величины ускорения :

3. Законы динамики Ньютона.

Великий физик И. Ньютон . И. Ньютон развенчал античные представления, что законы движения земных и небесных тел совершенно различны. Вся Вселенная подчинена единым законам, допускающим математическую формулировку.

Две фундаментальные задачи, решенные физикой И. Ньютона :

1. Создание для механики аксиоматической основы, которая перевела эту науку в разряд строгих математических теорий.

2. Создание динамики, связывающей поведение тела с характеристиками внешних воздействий на него (сил).

1. Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

2. Изменение количества движения пропорционально приложенной силе и происходит по направлению той прямой, по которой эта сила действует.

3. Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны.

Первый закон динамики И. Ньютона . Всякое тело продолжает удерживаться в состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Понятия инерции и инертности тела . Инерция – это явление, при котором тело стремится сохранить свое первоначальное состояние. Инертность – это свойство тела сохранять состояние движения. Свойство инертности характеризуется массой тела.

Развитие Ньютоном теории механики Галилея . Долгое время считалось, что для поддержания любого движения необходимо осуществлять нескоменсированное внешнее воздействие со стороны других тел. Ньютон разбил эти убеждения, выведенные Галилеем.

Инерциальная система отсчета . Системы отсчёта, относительно которых свободное тело движется равномерно и прямолинейно, называются инерциальными.

Первый закон Ньютона – закон инерциальных систем . Первый закон Ньютона – это постулат о существовании инерциальных систем отсчёта. В инерциальных системах отсчёта механические явления описываются наиболее просто.

Второй закон динамики И. Ньютона . В инерциальной системе отсчёта прямолинейное и равномерное движение может происходить только в том случае, если на тело не действуют другие силы или действие их скомпенсировано, т.е. уравновешено. Демонстрируется видеопоказом с объяснениями.

Принцип суперпозиции сил . Демонстрируется видеопоказом с объяснениями.

Понятие массы тела . Масса – одна из самых фундаментальных физических величин. Масса характеризует сразу несколько свойств тела и обладает рядом важных свойств.

Сила - центральное понятие второго закона Ньютона . Второй закон Ньютона определяет, что тело тогда будет двигаться с ускорением, когда на него действует сила. Сила – мера взаимодействия двух (или больше) тел.

Два вывода классической механики из второго закона И. Ньютона:

1. Ускорение тела напрямую связано с приложенной к телу силой.

2. Ускорение тела напрямую связано с его массой.

Демонстрация прямой зависимости ускорения тела от его массы

Третий закон динамики И. Ньютона . Демонстрируется видеопоказом с объяснениями.

Значение законов классической механики для современной физики . Механика, основанная на законах Ньютона, называется классической механикой. В рамках классической механики хорошо описывается движение не очень маленьких тел с не очень большими скоростями.

Демонстрации:

Физические поля вокруг элементарных частиц.

Планетарная модель атома Резерфорда и Бора.

Движение, как физическое явление.

Поступательное движение.

Равномерное прямолинейное движение

Неравномерное относительное механическое движение.

Видеоанимация системы отсчета.

Криволинейное движение.

Путь и траектория.

Ускорение.

Инерция покоя.

Принцип суперпозиции.

2-й закон Ньютона.

Динамометр.

Прямая зависимость ускорения тела от его массы.

3-й закон Ньютона.

Контрольные вопросы:.

    Сформулируйте определение и научный предмет физики.

    Сформулируйте физические свойства, общие для всех явлений природы.

    Сформулируйте основные этапы эволюции физической картины мира.

    Назовите 2 основных принципа современной науки.

    Назовите особенности механистической модели мира.

    В чем суть молекулярно-кинетической теории.

    Сформулируйте основные признаки электромагнитной картины мира.

    Объясните понятие физического поля.

    Определите признаки и различия электрического и магнитного полей.

    Объясните понятия электромагнитного и гравитационного полей.

    Объясните понятие «Планетарная модель атома»

    Сформулируйте признаки современной физической картины мира.

    Сформулируйте основные положения современной физической картины мира.

    Объясните значение теории относительности А. Эйнштейна.

    Объясните понятие: «Механика».

    Назовите основные разделы механики и дайте им определения.

    Назовите основные физические характеристики движения.

    Сформулируйте признаки поступательного механического движения.

    Сформулируйте признаки равномерного и неравномерного механического движения.

    Сформулируйте признаки относительности механического движения.

    Объясните смысл физических понятий: «Точка отсчёта и система отсчёта в механическом движении».

    Назовите основные характеристики механического движения в системе отсчета.

    Назовите основные характеристики траектории прямолинейного движения.

    Назовите основные характеристики криволинейного движения.

    Дайте определение физическому понятию: «Путь».

    Дайте определение физическому понятию: «Скалярная величина».

    Воспроизведите физические формулы и единицы измерения характеристик механического движения.

    Сформулируйте физический смысл понятия: «Ускорение».

    Воспроизведите физическую формулу для определения величины ускорения.

    Назовите две фундаментальные задачи, решенные физикой И. Ньютона.

    Воспроизведите основные смыслы и содержание первого закона динамики И. Ньютона.

    Сформулируйте физический смысл понятия инерции и инертности тела.

    В чем проявилось развитие Ньютоном теории механики Галилея.

    Сформулируйте физический смысл понятия: «Инерциальная система отсчета».

    Почему первый закон Ньютона это закон инерциальных систем.

    Воспроизведите основные смыслы и содержание второго закона динамики И. Ньютона.

    Сформулируйте физические смыслы принципа суперпозиции сил, выведенного И. Ньютоном.

    Сформулируйте физический смысл понятия массы тела.

    Обоснуйте, что сила является центральным понятием второго закона Ньютона.

    Сформулируйте два вывода классической механики на основании второго закона И. Ньютона.

    Воспроизведите основные смыслы и содержание третьего закона динамики И. Ньютона.

    Объясните значение законов классической механики для современной физики.

Литература:

1. Ахмедова Т.И., Мосягина О.В. Естествознание: Учебное пособие / Т.И. Ахмедова, О.В. Мосягина. – М.: РАП, 2012. – С. 34-37.

Что такое точка отсчета? Что такое механическое движение?

Andreus-папа-ndrey

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики. Раздел механики, описывающий геометрические свойства движения без учёта причин, его вызывающих, называется кинематикой

В более общем значении движением называется любое пространственное или временное изменение состояния физической системы. Например, можно говорить о движении волны в среде.

* Движение материальной точки полностью определяется изменением её координат во времени (например, двух на плоскости) . Изучением этого занимается кинематика точки.
o Прямолинейное движение точки (когда она всегда находится на прямой, скорость параллельна эта прямой)
o Криволинейное движение это движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например, движение по окружности) .
* Движение твёрдого тела складывается из движения какой-либо его точки (например, центра масс) и вращательного движения вокруг этой точки. Изучается кинематикой твёрдого тела.
o Если вращение отсутствует, то движение называется поступательным и полностью определяется движением выбранной точки. Заметим, что при этом оно не обязательно является прямолинейным.
o Для описания вращательного движения - движения тела относительно выбранной точки, например закреплённого в точке, используют Углы Эйлера. Их количество в случае трёхмерного пространства равно трём.
o Также для твёрдого тела выделяют плоское движение - движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела положением любых двух точек.
* Движение сплошной среды. Здесь предполагается, что движение отдельных частиц среды довольно независимо друг от друга (обычно ограничено лишь условиями непрерывности полей скорости) , поэтому число определяющих координат бесконечно (неизестными становятся функции) .
Относительность - зависимость механического движения тела от системы отсчёта, не указав систему отсчёта - не имеет смысла говорить о движении.

Даниил юрьев

Виды механического движения [править | править вики-текст]
Механическое движение можно рассматривать для разных механических объектов:
Движение материальной точки полностью определяется изменением её координат во времени (например, для плоскости - изменением абсциссы и ординаты). Изучением этого занимается кинематика точки. В частности, важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение.
Прямолинейное движение точки (когда она всегда находится на прямой, скорость параллельна этой прямой)
Криволинейное движение - движение точки по траектории, не представляющей собою прямую, с произвольным ускорением и произвольной скоростью в любой момент времени (например, движение по окружности).
Движение твёрдого тела складывается из движения какой-либо его точки (например, центра масс) и вращательного движения вокруг этой точки. Изучается кинематикой твёрдого тела.
Если вращение отсутствует, то движение называется поступательным и полностью определяется движением выбранной точки. Движение при этом не обязательно является прямолинейным.
Для описания вращательного движения - движения тела относительно выбранной точки, например закреплённого в точке, - используют Углы Эйлера. Их количество в случае трёхмерного пространства равно трём.
Также для твёрдого тела выделяют плоское движение - движение, при котором траектории всех точек лежат в параллельных плоскостях, при этом оно полностью определяется одним из сечений тела, а сечение тела - положением любых двух точек.
Движение сплошной среды. Здесь предполагается, что движение отдельных частиц среды довольно независимо друг от друга (обычно ограничено лишь условиями непрерывности полей скорости), поэтому число определяющих координат бесконечно (неизвестными становятся функции).

Механическое движение. Путь. Скорость. Ускорение

Лара

Механическим движением называют изменение положения тела (или его частей) относительно других тел.
Положение тела задается координатой.
Линию, вдоль которой движется материальная точка, называют траекторией. Длину траектории называют путем. Единица пути - метр.
Путь = скорость* время. S=v*t.

Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением.

Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение - величина векторная. Единица перемещения - метр.

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка времени.
Формула скорости имеет вид v = s/t. Единица скорости - м/с. На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с) .

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Формула для вычисления ускорения: a=(v-v0)/t; Единица ускорения – метр/(секунда в квадрате) .

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

КИЕВСКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

(КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ)

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

РЕФЕРАТ

НА ТЕМУ: Механическое движение

Выполнила: студентка ІV курса

Группа 105 А

Запевайлова Диана

§ 1. Механическое движение

Когда шар или тележка, находящиеся на столе, изменяют свое положение по отношению к столу, то мы говорим, что они движутся. Точно так же мы говорим, что автомобиль движется, если он изменяет свое положение по отношению к дороге.

Изменение положения данного тела по отношению к каким-либо другим телам называется механическим движением.

В мировом пространстве механические движения совершают Земля, Луна и другие планеты, кометы, Солнце, звезды, туманности. На Земле мы наблюдаем механические движения облаков, воды в реках и океанах, животных и птиц; механические движения совершают и построенные человеком корабли, автомобили, поезда и самолеты; части машин, станков и приборов; пули, снаряды, авиабомбы и мины, и т. д. и т. д.

Изучением механических движений занимается раздел физики, называемый механикой. Слово «механика» произошло от греческого слова «механз», что значит машина, приспособление. Известно, что уже древние египтяне, а затем греки, римляне и другие народы строили различные машины, употреблявшиеся для транспорта, в строительном и военном деле (рис, 1); во время действия этих машин в них происходило движение (перемещение) различных частей: рычагов, колес, грузов и т.д. Изучение перемещения частей этих машин привело к созданию науки о движениях тел - механики.

Движение данного тела может носить совершенно различный характер в зависимости от того, по отношению к каким телам наблюдается изменение его положения.

Например, яблоко, лежащее на столике движущегося вагона, находится в покое по отношению к столику и всем другим предметам в вагоне; но оно находится в движении по отношению к предметам, расположенным на земле, вне вагона поезда. В безветренную погоду струи дождя представляются вертикальными, если за ними следить из окна вагона, стоящего на станции; при этом капли оставляют на оконном стекле вертикальные следы. Но по отношению к движущемуся вагону струи дождя представятся косыми: дождевые капли будут оставлять на стекле наклонные следы, причем наклон будет тем больше, чем больше скорость вагона.

Зависимость характера движения от выбора тел, к которым движение относится, называется относительностью движения. Всякое движение и, в частности, покой являются относительными.

Таким образом, давая ответ на вопрос, покоится ли тело или движется и как оно движется, мы должны указать, относительно каких тел рассматривается движение интересующего нас тела. В тех случаях, когда это не указывается прямо, мы всегда подразумеваем такие тела. Так, говоря просто опадении камня, движении автомобиля или самолета, мы всегда подразумеваем, что дело идет о движении по отношению к Земле; говоря о движении Земли в целом, мы обычно имеем в виду движение относительно Солнца или звезд, и т. д.

Приступая к изучению движения отдельных тел, мы можем сначала не задавать себе вопроса о тех причинах, которыми вызываются эти движения. Например, мы можем следить за движением облака, совсем не обращая внимания на ветер, который его гонит; мы видим, как движется автомобиль по шоссе, и, описывая его движение, можем не обращать внимания на работу его мотора.

Отдел механики, в котором описываются и изучаются движения без исследования причин, их вызывающих, называется кинематикой.

Для описания движения тела нужно, вообще говоря, указать, как изменяется положение различных точек тела со временем. При движении тела всякая его точка описывает некоторую линию, которая называется траекторией движения этой точки.

Проводя мелом по доске, мы оставляем на ней след - траекторию движения кончика мела относительно доски. Светящийся след метеора представляет собой траекторию его движения (рис. 2). Светящийся след трассирующей пули показывает стрелку ее траекторию и облегчает пристрелку (рис. 3).

Траектории движения разных точек тела могут быть, вообще говоря, совершено различны. Это можно показать, например, быстро двигая в темной комнате тлеющую с двух концов лучнику. Благодаря свойству глаза сохранять зрительное впечатление мы увидим траектории тлеющих концов и сможем легко сравнить обе траектории (рис. 4).

Итак, траектории разных точек движущегося тела могут быть различны, Поэтому для описания движения тела необходимо указать, как движутся различные его точки. Указав, например, что один конец лучины движется по прямой линии, мы не дадим полного описания движения, потому что еще не известно, как движутся другие ее точки, например второй конец лучины.

Наиболее простым является такое движение тела, при котором все его ТОЧКИ движутся одинаково - описывают одинаковые траектории. Такое движение называется поступательным. Легко воспроизвести этот тип движения.

Будем двигать нашу лучинку так, чтобы она все время оставалась параллельной самой себе.

Мы увидим, что при этом ее концы опишут одинаковые траектории. Это могут быть прямые или кривые линии (рис. 5). Можно доказать, что при поступательном движении любая п рямая, проведенная в теле, остается параллельной самой себе.

Этим признаком удобно пользоваться, чтобы ответить на вопрос, является ли движение данного тела поступательным. Например, при скатывании цилиндра по наклонной плоскости прямые, пересекающие ось, не остаются параллельными сами себе, следовательно, качение цилиндра- не есть поступательное движение (рис. 6, а). Но при соскальзывании по плоскости бруска с плоскими гранями любая прямая, проведенная в нем, останется параллельной самой себе,- соскальзывание бруска есть поступательное движение (рис. 6, б). Поступательным движением является движение иглы в швейной машине, движение поршня в цилиндре паровой машины или в цилиндре мотора, движение гвоздя, забиваемого в стенку, движение кабинок «чертова колеса» (рис. 141 на стр. 142), Приблизительно поступательным является движение напильника при опиловке плоскости (рис. 7), движение кузова автомашины (но не колес!) при езде по прямой и т. д.

Другим распространенным типом движения является вращательное движение тела. При вращательная движении все точки тела описывают окружности, центры которых лежат на прямой (прямая 00", рис. 8), называемой осью вращения. Окружности эти расположены в параллельных плоскостях, перпендикулярных к оси вращения. Точки оси остаются при этом неподвижными. Всякая прямая, проходящая под углом к оси вращения, не остается при движении параллельной самой себе. Таким образом, вращение не является поступательным движением. Вращательное движение весьма широко применяется в технике; движения колес, блоков, валов и осей различных механизмов, пропеллера и т. п. являются примерами вращательного движения. Суточное движение Земли есть также вращательное движение.

Мы видели, что для описания движения тела нужно, вообще говоря, знать, как движутся различные точки тела. Но если тело движется поступательно, то все точки его движутся одинаково. Поэтому для описания поступательного движения тела достаточно описать движение какой-нибудь одной точки тела. Например, описывая поступательное не движение автомобиля, достаточно указать, как движется конец флажка на радиаторе или любая другая точка на его кузове.

Таким образом, в ряде случаев описание движения тела сводится к описанию движения точки. Поэтому мы начнем изучение движений с изучения движения отдельной точки.

Движения точки, прежде всего, различаются по виду описываемой ею траектории. Если траектория, которую описывает точка, представляет собой прямую линию, то ее движение называется прямолинейным. Если траектория движения есть кривая, то движение называется криволинейным.

Поскольку разные точки тела могут двигаться по-разному, понятие прямолинейного (или криволинейного) движения относится к движению отдельных точек, а не всего тела в целом. Так, прямолинейность движения одной или нескольких точек тела вовсе не означает прямолинейного движения всех других точек тела. Например, при скатывании цилиндра (рис. 6, а) все точки, лежащие на оси цилиндра, движутся прямолинейно, тогда как другие точки цилиндра описывают криволинейные траектории. Только при поступательном движении тела, когда все его точки движутся одинаково, можно говорить о прямолинейности движения тела в целом и вообще о траектории всего тела.

Описанием движения одной точки тела часто можно ограничиться и в том случае, когда тело совершает поступательное, й вращательное движение, если при этом расстояние до оси вращения очень велико по сравнению с размерами тела. Таково, например, движение самолета, описывающего вираж, или движение поезда на закруглении пути, или движение Луны относительно Земли. В этом случае окружности, описываемые различными точками тела, очень мало отличаются друг от друга. Траектории движения этих точек оказываются почти одинаковыми, и если нас не интересует поворот тела как целого, то для описания движения его точек также достаточно указать, как движется какая-либо одна точка тела.

Описание движения тела должно дать возможность определить положение тела в любой момент времени. Что же нам нужно знать для этого?

Допустим, что мы хотим определить положение, которое в известный момент времени занимает идущий поезд. Мы должны для этого знать следующее:

    Траекторию движения поезда. Если, например, поезд идет из Москвы в Ленинград, то железнодорожный путь Москва-Ленинград и представляет собой эту траекторию.

    Положение, поезда на этой траектории в какой-либо определенный момент времени. Например, известно, что в 0 ч. 30 м. ночи поезд вышел из Москвы. В нашей задаче Москва - это начал ь-ное положение поезда, или начало отсчета пут и, и соответственно 0ч. 30 м. - это начальный момент, или начало отсчета времени.

    Промежуток времени, который отделяет интересующий нас момент времени от начального. Пусть этот промежуток равен 5 часам, т. е. мы ищем положение поезда к 5 ч. 30 м. утра.

4) Путь, пройденный поездом за этот промежуток времени. Допустим, что этот путь равен 330 км.

На основании этих данных мы можем ответить на интересующий нас вопрос. Взяв карту (рис.9) и отложив вдоль линии, изображающей дорогу Москва-Ленинград, расстояние в 330 км от. Москвы в сторону Ленинграда, мы найдем, что в 5 ч. 30 м. утра поезд находился на станции Бологое.

Начало отсчета пути и начало отсчета времени не должны обязательно совпадать с началом рассматриваемого движения. Начальным моментом и начальным положением называют этот момент и это положение не потому, что они соответствуют началу движения, а потому, что они являются начальными (исходными) данными нашей задачи. В качестве начальных данных можно указать положение поезда в любой, но определенный момент времени. Достаточно, например, было бы указать, что, Положим, в 1 ч, 15 м. ночи поезд проходил мимо станции Крюково. Тогда станция Крюково была бы началом отсчета пути, а 1 ч. 15 м, ночи - началом отсчета времени. Интересующий нас момент времени (5 ч. 30 м. утра) отделен от начального момента промежутком в 4 ч. 15 м.; если нам известно, что за 4 ч. 15 м. поезд прошел 290 км, то мы найдем, так же как и в первом случае, что в 5 ч. 30 м. утра поезд окажется на станции Бологое (рис. 9).

Итак, для описания движения необходимо знать траекторию движения тела, установить положение тела на траектории в различные моменты времени и определить длину пути, проходимого телом за те или иные промежутки времени. Но для того, чтобы определить путь, проходимый телом за тот или иной промежуток времени, мы должны уметь измерять эти величины - длину пути и промежуток времени. Таким образом, в основе всякого описания движения лежат измерения длины и промежутков времени.

В дальнейшем мы будем обозначать длину пути, пройденного телом за некоторый промежуток времени, иначе говоря, перемещение тела, буквой 5, а величину промежутка времени - буквой t. При этом рядом с буквами мы будем иногда ставить обозначение тех единиц, в которых данная величина измерена. Например, S M , t сек будет означать, что длину пути мы измерили в метрах, а промежуток времени - в секундах.

Основной единицей измерения длины пути (как и вообще длины) служит метр. В качестве образца метра принято расстояние между двумя штрихами на платиновоиридиевом стержне, хранящемся в Международном бюро мер и [ весов в Париже (рис. 10). Кроме этой основной единицы, в физике применяются и другие единицы - кратные метра и доли метра:

Нониус представляет собой добавочную шкалу, могущую передвигаться вдоль основной. Деления нониуса меньше делений основной шкалы на 0,1 их величины (например, если деления основной шкалы равны 1 мм, то деления нониуса равны 0,9 мм). На рисунке видно, что длина измеряемого тела Л больше 3 мм, но меньше 4 мм. Чтобы найти, сколько десятых долей миллиметра составляет излишек длины против 3 мм, смотрят, какой из штрихов нониуса совпадает с каким-нибудь из штрихов основной шкалы. На нашем рисунке седьмой штрих нониуса совпадает с десятым штрихом основной шкалы. Значит, шестой штрих нониуса отступает от девятого штриха основной шкалы на 0,1 мм, пятый от восьмого - на 0,2 мм и т. д.; начальный от третьего - на 0,7 мм. Отсюда следует, что длина предмета А равна стольким целым миллиметрам, сколько их находится до начала нониуса (3 мм), и стольким десятым долям миллиметра, сколько делений нониуСа находится от начала до совпадающих штрихов (0,7 мм). Итак, длина предмета Л равна 3,7 мм.

1 километр (1000 метров), 1 сантиметр (1/100 метра), 1 миллиметр (1/1000 метра), 1 микрон (1/1000000 метра, обозначается мк или - греческая буква «мю»).

На практике для измерения длины применяют копии этого метра, т. с. проволоки, стержни, линейки или ленты с делениями, длина которых равна длине образцового метра или его части (сантиметры и миллиметры). При измерении один конец измеряемой длины совмещают с началом измерительной линейки и отмечают на ней положение второго конца. Для более точного отсчета применяются вспомогательные приспособления. Одно из них - н он и-у с - изображено на рис. 11. Рис, 12 показывает ходовой измерительный прибор - штангенциркуль) снабженный нониусом.

С 1963 г. в СССР принята в качестве рекомендованной во всех областях науки и техники система единиц СИ (от слов что значит Международная система). Согласно этой системе, метр определен как длина, равная 1650763,73 длины волны красного света, излучаемого специальной лампой, в которой светящимся веществом является газ криптон. Практически эта единица длины совпадает с парижским образцом метра, но ее можно воспроизводить оптическим путем с большей точностью, чем образец. называется изменение положения предмета... . Простейшим объектом для изучения механического движения может служить материальная точка-тело... .... tn), называется траекторией движения . При движении точки конец ее радиус-вектора...

  • Механическое и естественное движение населения

    Курсовая работа >> Экономика

    Стандарт для сравнения. Показатели механического движения населения Механическое изменение – изменение численности... показатель движения населения – В. Число прибывших – П. Абсолютный механический прирост – Пмех.=П-В. Интенсивность механического движения ...

  • Механическая ,электромагнитная и квантово-релятивистская научная картина мира

    Закон >> Биология

    Лтература……………………………………………………………....14 Раздел 1 . Механическая научная картина мира. В... релятивистской и квантово-механической в 20-м веке. Механическая картина мира складывалась под... механицизм. Само становление механической картины справедливо связывают с...

  • Механическая картина мира (2)

    Контрольная работа >> Физика

    Картиной мира появляется идея относительности механического движения . Сам Коперник мало успел сделать... , установленных Галилеем (законы равноускоренного движения принцип относительности механического движения ), началось развитие науки механики...

  • Что такое механическое движение и чем оно характеризуется? Какие параметры вводятся для понимания этого вида движения? Какими терминами при этом чаще всего оперируют? В данной статье мы ответим на эти вопросы, рассмотрим механическое движение с разных точек зрения, приведем примеры и займемся решением задач из физики соответствующей тематики.

    Основные понятия

    Еще со школьной скамьи нас учат тому, что механическое движение представляет собой изменение положения тела в любой момент времени относительно других тел системы. На самом деле все так и есть. Давайте примем обыкновенный дом, в котором мы находимся, за ноль координатной системы. Представьте визуально, что дом будет началом координат, а из него в любых направлениях будет выходить ось абсцисс и ось ординат.

    В таком случае наше движение в пределах дома, а также за его пределами будет наглядно демонстрировать механическое движение тела в системе отсчета. Представьте, будто точка перемещается по системе координат, в каждый момент времени изменяя свою координату относительно как оси абсцисс, так и относительно оси ординат. Все будет просто и понятно.

    Характеристика механического движения

    Каким же может быть такой тип движения? Сильно углубляться в дебри физики мы не будем. Рассмотрим простейшие случаи, когда происходит движение материальной точки. Оно подразделяется на прямолинейное движение, а также на криволинейное движение. В принципе, из названия все уже должно быть понятно, но давайте на всякий случай поговорим об этом конкретнее.

    Прямолинейным движением материальной точки будет называться такое движение, которое осуществляется по траектории, имеющий вид прямой линии. Ну, например, машина едет прямо под дороге, которая не имеет поворотов. Или по участку подобной дороги. Вот это и будет прямолинейное движение. При этом оно может быть равномерным или равноускоренным.

    Криволинейным движением материальной точки будет называться такое движение, которое осуществляется по траектории, которая не имеет вид прямой линии. Траектория может представлять собой ломанную линию, а также замкнутую линию. То есть круговая траектория, эллипсоидная и так далее.

    Механическое движение населения

    Этот вид движения не имеет практически абсолютно никакого отношения к физике. Хотя, смотря с какой точки зрения мы его воспринимаем. Что, вообще, называется механическим движением населения? Им называется переселение индивидуумов, которое происходит в результате проведения миграционных процессов. Это может быть как внешняя, так и внутренняя миграция. По продолжительности механическое движение населения подразделяется на постоянное и временное (плюс маятниковое и сезонное).

    Если мы будем рассматривать этот процесс с физической точки зрения, то можно сказать только одно: это движение будет прекрасно демонстрировать движение материальных точек в системе отсчета, связанной с нашей планетой - Землей.

    Равномерное механическое движение

    Как ясно из названия, это такой тип движения, при котором скорость тела имеет определенное значение, сохраняемое постоянным по модулю. Иными словами, скорость тела, которое движется равномерно, не изменяется. В реальной жизни мы практически не можем заметить идеальных примеров равномерного механического движения. Вы можете вполне резонно возразить, мол, можно ехать на автомобиле со скоростью 60 километров в час. Да, безусловно, спидометр транспортного средства может демонстрировать подобное значение, но это не означает, что на самом деле скорость автомобиля будет равной именно шестидесяти километрам в час.

    О чем идет речь? Как мы знаем, во-первых, все измерительные приборы имеют определенную погрешность. Линейки, весы, механические и электронные приборы - у всех у них есть определенная погрешность, неточность. Вы можете сами убедиться в этом, взяв с десяток линеек и приложив их одна к другой. После этого вы сможете заметить некоторые несовпадения между миллиметровыми отметками и их нанесением.

    То же самое касается и спидометра. Он имеет определенную погрешность. У приборов неточность численно равна половине цены деления. В автомобилях неточность спидометра будет составлять 10 километров в час. Именно поэтому в определенный момент нельзя точно сказать, что мы движемся с той или иной скоростью. Вторым фактором, который будет вносить неточность, будут силы, действующие на автомобиль. Но силы неразрывно связаны с ускорением, поэтому на эту тему мы поговорим несколько позже.

    Очень часто равномерное движение встречается в задачах математического характера, нежели физического. Там мотоциклисты, грузовые и легковые автомобили движутся с одной и той же скоростью, равной по модулю в разные моменты времени.

    Равноускоренное движение

    В физике такой вид движения встречается достаточно часто. Даже в задачах части “А” как 9-ого, так и 11-ого класса встречаются задания, в которых нужно уметь производить операции с ускорением. Например, “А-1”, где нарисован график движения тела в координатных осях и требуется вычислить, какое расстояние автомобиль прошел за тот или иной промежуток времени. Причем один из промежутков может демонстрировать равномерное движение, в то время как на втором необходимо вычислить сначала ускорение и только потом считать пройденное расстояние.

    Как же узнать, что движение равноускоренное? Обычно в задачах информация об этом подается напрямую. То есть имеется либо численное указание ускорения, либо даются параметры (время, изменение скорости, дистанция), которые позволяют нам определить ускорение. Следует отметить, что ускорение - векторная величина. А значит она может быть не только положительной, но и отрицательной. В первом случае мы будем наблюдать ускорение тела, во втором - его торможение.

    Но бывает, что информация о типе движения ученику преподается в несколько скрытной, если ее можно так назвать, форме. Например, говорится, что на тело ничего не действует или сумма всех сил равна нулю. Ну что же, в этом случае нужно четко понимать, что речь идет о равномерном движении либо о покое тела в определенной системе координат. Если вы вспомните второй закон Ньютона (в котором говорится о том, что сумма всех сил есть не что иное, как произведение массы тела на ускорение, сообщаемое под действием соответствующих сил), то легко заметите одну интересную вещь: если сумма сил равна нулю, то произведение массы на ускорение также будет равно нулю.

    Вывод

    Но ведь масса - это у нас величина постоянная, и она априори не может быть нулевой. В таком случае логичным будет вывод о том, что при отсутствии действия внешних сил (или при их компенсированном действии) ускорение у тела отсутствует. Значит, оно либо покоится, либо движется с постоянной скоростью.

    Формула равноускоренного движения

    Иногда встречается в научной литературе подход, согласно которому сначала даются легкие формулы, а потом с учетом некоторых факторов они усложняются. Мы сделаем все наоборот, а именно, рассмотрим сначала равноускоренное движение. Формула, согласно которой вычисляется пройденная дистанция, выглядит следующим образом: S = V0t + at^2/2. Здесь V0 - начальная скорость тела, a - ускорение (может быть отрицательным, тогда знак + изменится в формуле на -), а t - время, прошедшее с начала движения до остановки тела.

    Формула равномерного движения

    Если же мы будем говорить о равномерном движении, то вспомним, что при этом ускорение равно нулю (a = 0). Подставим ноль в формулу и получим: S = V0t. Но ведь скорость на всем участке пути у нас постоянна, если говорить грубо, то есть придется пренебречь силами, действующими на тело. Что, кстати, в кинематике практикуется повсеместно, поскольку кинематика не изучает причины возникновения движения, этим занимается динамика. Так вот, если скорость на всем участке пути у нас постоянна, то ее начальное значение совпадает с любым промежуточным, а также конечным. Поэтому формула расстояния будет выглядеть следующим образом: S = Vt. Вот и все.

    Похожие публикации