А.4.1 Характеристики поля излучения. Интенсивность освещения. Комфортная для глаз интенсивность освещения

Интенсивность света измеряется при размещении освещения в помещении или при подготовке оборудования к фотосъемке. Термин "интенсивность" используется по-разному, и из этой статьи вы узнаете, какие устройства и методы подойдут для ваших целей. Профессиональные фотографы и светотехники используют цифровые экспонометры, но вы можете сделать простое устройство со схожим действием - фотометр Джоли - самостоятельно.

Шаги

Как измерить интенсивность освещения в помещении и интенсивность света лампы

    Разберитесь в фотометрах, которые измеряют интенсивность света в люкс и фут-канделах. Такие приборы измеряют интенсивность света на поверхности, то есть освещенность . Обычно такие устройства используются для подготовки к фотосъемке и при проверке освещенности помещения.

    Узнайте, как следует интерпретировать данные. Вот несколько примеров типичных показаний, которые помогут вам понять, следует ли вам изменить освещение в помещении:

    • Работать в офисе комфортно при освещенности 250-500 люкс (23-46 фут-канделов).
    • В супермаркетах и на рабочих местах, требующих тонкой работы, используется освещенность 750-1000 люкс (70-93 фут-канделов). Верхнее значение сопоставимо с освещенностью на открытом пространстве на улице в светлый солнечный день.
  1. Узнайте, что такое люмены. Если в описании лампочки встречается слово "люмен", оно описывает, сколько энергии испускает лампочка в виде видимого света. Вам нужно знать следующее:

    Измерьте угол наклона и поле лучей. Эти характеристики применимы к источникам света, которые направляют световой поток узким лучом в определенную сторону (к примеру, фонарики). Эти значения можно измерить экспонометром и с помощью линейки и транспортира.

    • Держите экспонометр прямо перед самым ярким лучом. Подвигайте его, пока не найдете участок с максимальной интенсивностью света (освещенностью).
    • Сохраняя то же расстояние до источника света, сместите экспонометр в одну сторону, пока интенсивность света не уменьшится до 50% от максимального уровня. С помощью линейки или нитки проведите линию от источника света до этой точки.
    • Проделайте то же самое с другой стороны. Проведите линию.
    • С помощью транспортира измерьте угол между двумя линиями. Это и будет углом луча - то есть углом, под которым расходится свет.
    • Чтобы измерить поле, проделайте то же самое, только отметьте точки там, где интенсивность освещения будет равняться 10% от максимального значения.

    Как измерить относительную освещенность самодельным устройством

    1. Сделайте устройство своими руками. Собрать его несложно, если у вас есть нужные материалы. Это изобретение называется фотометром Джоли, и с его помощью можно измерить относительную интенсивность двух источников света. Обладая необходимыми знаниями физики, о которых речь пойдет ниже, можно выяснить, какая из двух лампочек дает больше света и какая из них более эффективная.

      • Поскольку значение будет относительным , оно не будет выражено в точных единицах. Вы будете знать соотношение между двумя источниками света, но не сможете выяснить точные числа, не прибегая к еще одному эксперименту.
    2. Разрежьте кусок парафинового воска пополам. Купите воск в хозяйственном магазине, отрежьте кусочек весом 500 граммов, а затем острым ножом разрежьте этот кусочек пополам.

      Положите фольгу между двумя кусками воска. Оторвите кусочек алюминиевой фольги от листа и положите его на один из кусков, стараясь накрыть всю верхнюю поверхность целиком. Сверху поместите второй кусок воска.

      Поверните полученную конструкцию вертикально. Чтобы устройство заработало, его нужно повернуть так, чтобы фольга оказалась в вертикальном положении. Если воск сам не держится, можете пока оставить его в горизонтальном положении, но помните, что коробка, которую вы будете собирать, должна будет удерживать воск вертикально.

      Прорежьте три окошка в картонной коробке. Возьмите коробку, в которую поместится воск. Возможно, вам подойдет упаковка от воска. Отмерьте окошки и вырежьте их ножницами.

      • Прорежьте два окна одинакового размера с противоположных сторон. Отверстия должны быть напротив разных сторон парафина, когда те окажутся в коробке.
      • Прорежьте третье окно любого размера в передней части коробки. Отверстие должно быть по центру, чтобы вы могли видеть обе части восковых кусочков.
    3. Положите внутрь воск. Фольга между двумя кусками должна находиться в вертикальном положении. Возможно, вам придется использовать изоленту либо скотч, небольшие кусочки картона или и то, и другое, чтобы воск не переворачивался, а фольга - не съезжала.

      • Если у коробки нет крышки, накройте ее картоном или любым другим непрозрачным предметом.
    4. Выберите точку отсчета. Решите, какой источник света вы будете использовать в качестве отправной точки. Если вы будете сравнивать более двух источников света, вы сможете использовать эту лампу при каждом сравнении.

      Расположите два источника света на прямой линии. Положите две небольшие лампочки, светодиоды или другие источники света на ровную поверхность на прямой линии. Расстояние между ними должно быть больше ширины коробки, которую вы только что сделали.

      Расположите экспонометр между двумя источниками света. Он должен быть на такой же высоте, как и лампочки, чтобы лампочки могли полностью освещать воск внутри коробки через окошки. Помните, что источники света должны быть на большом расстоянии друг от друга.

      Выключите свет в помещении. Закройте окно, задвиньте шторы, опустите жалюзи, чтобы сторонний свет не проникал в коробку.

      Поправьте лампочки так, чтобы воск был освещен с обеих сторон одинаково. Поднесите фотометр к стороне с меньшей освещенностью. Передвигая коробку, смотрите в окошко на передней стороне коробки. Остановитесь, когда оба куска воска будут подсвечены одинаково.

    5. Измерьте расстояние от экспонометра до каждого источника света. Рулеткой измерьте расстояние от фольги до лампы, которую вы выбрали в качестве точки отсчета. Обозначьте эту точку как d1 . Запишите расстояние, затем измерьте расстояние от фольги до источника света с противоположной стороны, d2 .

      • Расстояние можно измерять в любых величинах, главное - не путать их. К примеру, если вы измеряете в сантиметрах, пишите только сантиметры (без метров).
    6. Например, предположим, что расстояние d 1 до источника света, взятого за точку отсчета, составляет 60 сантиметров, а расстояние d 2 до второго источника света - 1,5 метров.
    7. I 2 = 5 2 /2 2 = 25/4 = 6.25
    8. Интенсивность света второго источника в 6.25 раз больше , чем первого.
  2. Рассчитайте эффективность. Если на лампочках отмечена мощность в ваттах (например, 60 ватт), эти цифры означают, сколько электричества потребляет лампочка. Разделите относительную интенсивность лампочки на это число, и вы получите эффективность лампочки относительно других источников света. Например:

    • У лампочки 60 ватт с относительной интенсивностью 6 относительная эффективность равняется 6/60 = 0.1.
    • У лампочки 40 ватт с относительной интенсивностью 1 относительная эффективность равняется 1/40 = 0.025.
    • Поскольку 0.1 / 0.025 = 4, лампочка 60 ватт в четыре раза эффективнее превращает электрический ток в свет. Помните, что она будет потреблять больше энергии, чем лампочка 40 ватт, а это обойдется вам в более крупную сумму. Эффективность - это процент пользы на каждую потраченную денежную единицу.
  • Рассчитав сравнительную интенсивность света, можно измерить интенсивность освещенности с помощью аналогового или цифрового экспонометра. Новые цифровые экспонометры измеряют интенсивность в люкс, а старые аналоговые - в фут-канделах. 1 фут-кандела =10.76 люкс.

А.4. Перенос излучения в атмосфере

Основными физическими характеристиками поля излучения являются – интенсивность, плотность, поток .

Интенсивность (яркость) излучения - это количество световой энергии, которое падает перпендикулярно на площадку единичной площади (испускается с единицы площади видимой поверхности источника) из единичного телесного угла за единицу времени:

В этом выражении dE – количество световой энергии, dS – площадка, принимающая энергию, - телесный угол, из которого поступает энергия излучения, dt – интервал времени, в течение которого действует излучение. Предполагается, что телесный угол достаточно мал, а площадка перпендикулярна направлению распространения излучения.

В общем случае следует рассматривать так называемую спектральную интенсивность - интенсивность, отнесенную к единичному интервалу длин волн излучения I λ или частоты I ν (здесь индексы обозначают длину волны или частоту). Согласно определению, интенсивность является функцией координат точки среды r , направления распространения и времени (здесь углы определены в сферической системе координат, k – единичный вектор, определяющий направление распространения излучения). Для элемента телесного угла в сферической системе координат имеем

.

Приведенное определение яркости имеет смысл, когда речь идет о поверхностном источнике, для которого вполне очевидно понятие единицы поверхности источника излучения. В случае, когда речь идет о яркости объемного источника излучения (яркости неба), такое определение, по крайней мере, непонятно. Покажем, что яркость источника численно равна интенсивности излучения, регистрируемого на некотором расстоянии, когда угол меньше угловых размеров источника. Предположим, что названный угол охватывает площадку источника излучения, находящегося на расстоянии r от точки наблюдения, и угол между направлением распространения излучения и нормалью к площадке равен α. Тогда . Подставляя это выражение в определение интенсивности, получаем

где обозначено, - телесный угол, в котором распространяется испускаемое излучение. Таким образом, яркость протяженного источника численно равна интенсивности излучения этого источника на некотором удалении от него . В данной формулировке отсутствует упоминание о поверхности источника, поэтому оно применимо и к источникам, не имеющим ярко выраженной излучающей поверхности, например, к такому объемному источнику рассеянного солнечного излучения как атмосфера. При этом предполагается, конечно, что на пути от источника к точке наблюдения среда не вносит дополнительного ослабления излучения.


Объёмная плотность излучения ρ – это количество световой энергии в единице объема среды. Распространяясь со скоростью света c , излучение I по направлению k за время dt занимает объём dV= cdtdS , а энергия, поступившая в объём, - dE=IdSdΩdt . Здесь ds – элементарная площадка, перпендикулярная направлению распространения излучения. Следовательно, вклад в величину ρ от излучения, приходящего из по направлению k, равен

.

Полная плотность излучения получается путём суммирования отдельных вкладов от разных направлений:

.

Если I не зависит от направления, говорят, что излучение изотропно. Тогда

Например, объёмная плотность излучения черного тела

,

а интенсивность .

Потоком излучения называется количество световой энергии, падающей на выбранную площадку за единицу времени со всех направлений. Поток через единичную площадку называется плотностью потока . По направлению k , в частности, на единичную площадку падает в элементарном телесном угле энергия

Следовательно, плотность потока будет равна

.

Чтобы получить значение потока через площадку произвольной площади, приведенное выражение следует проинтегрировать по этой площади. Здесь предполагается, что ось z системы координат совпадает с направлением нормали к площадке n. Тогда зависимость от ориентации излучения k по отношению к площадке «спрятана» в величинах углов и φ сферической системы координат, определяющих направление k .

Выражение для плотности потока можно переписать ещё так: Н =Н + -Н - где,

.

Здесь проведено разделение на потоки, падающие на площадку из верхней и нижней полусфер (если площадка ориентирована горизонтально). Если I не зависит от направления, тогда такие потоки равны, и суммарная плотность потока равна нулю. Плотность потока из верхней полусферы H + еще называют освещенностью (количество энергии излучения, падающего из верхней полусферы на горизонтальную площадку единичной площади в единицу времени).

Световые волны.

Законы геометрической (лучевой) оптики

Световые волны. Интенсивность света. Световой поток. Законы геометрической оптики. Полное внутреннее отражение

Оптика – это раздел физики, изучающий природу светового излучения, его распространение и взаимодействие с веществом. Раздел оптики, в котором изучается волновая природа света, называется волновой оптикой. Волновая природа света лежит в основе таких явлений, как интерференция, дифракция, поляризация. Раздел оптики, в котором не учитываются волновые свойства света и который основывается на понятии луча, называется геометрической оптикой.

§ 1. СВЕТОВЫЕ ВОЛНЫ

Согласно современным представлениям, свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других – как поток особых частиц (фотонов). Такое свойство называется корпускулярноволновым дуализмом (корпускула – частица, дуализм – двойственность). В этой части курса лекций будем рассматривать волновые явления света.

Световая волна – это электромагнитная волна с длиной волны в вакууме в диапазоне:

= (0,4¸ 0,76)× 10− 6 м= 0,4¸ 0,76 мкм= 400¸ 760 нм=

4 000¸

A –

ангстрем – единица измерения длины. 1A = 10−10 м.

Волны такого диапазона воспринимаются человеческим глазом.

Излучение с длиной волны меньше 400 нм называют ультрафиолетовым, а

с большей, чем 760 нм, –

инфракрасным.

Частота n световой волны для видимого света:

= (0,39¸ 0,75)× 1015 Гц,

с = 3× 108 м/с- скорость света в вакууме.

Скорость

совпадает

скоростью

распространения

электромагнитной волны.

Показатель преломления

Скорость распространения света в среде, как и любой электромагнитной волны, равна (см. (7.3)):

Для характеристики оптических свойств среды вводится показатель преломления. Отношение скорости света в вакууме к скорости света в данной среде называется абсолютным показателем преломления:

С учетом (7.3)

так как для большинства прозрачных веществ μ=1.

Формула (8.2) связывает оптические свойства вещества с его электрическими свойствами. Для любой среды, кроме вакуума, n> 1. Для вакуума n = 1, для газов при нормальных условиях n≈ 1.

Показатель преломления характеризует оптическую плотность среды . Среда с большим показателем преломления называется оптически более плотной. Обозначим абсолютные показатели преломления для двух сред:

n 2 =

Тогда относительный показатель преломления равен:

n 21=

где v 1 и v 2 –

скорости света в первой и второй среде, соответственно.

диэлектрическая

проницаемость среды ε зависит от частоты

электромагнитной волны, то n = n(ν) илиn = n(λ) – показатель преломления будет зависеть от длины волны света (см. лекции № 16, 17).

Зависимость показателя преломления от длины волны (или частоты) называется дисперсией .

В световой волне, как и в любой электромагнитной волне, колеблются векторы E и H. Эти векторы перпендикулярны друг другу и направлению

вектора v . Как показывает опыт, физиологическое, фотохимическое, фотоэлектрическое и другие виды воздействий вызываются колебаниями электрического вектора. Поэтому световой вектор – это вектор напряженности электрического поля световой (электромагнитной) волны.

Для монохроматической световой волны изменение во времени и пространстве проекции светового вектора на направление, вдоль которого он

Здесь k – волновое число; r – расстояние, отсчитываемое вдоль направления распространения волны; E m – амплитуда световой волны. Для плоской волныE m = const , для сферической убывает как 1/r.

§ 2. ИНТЕНСИВНОСТЬ СВЕТА. СВЕТОВОЙ ПОТОК

Частота световых волн очень велика, поэтому приемник света или глаз фиксирует усредненный по времени поток. Интенсивностью света называется модуль среднего по времени значения плотности энергии в данной точке пространства. Для световой волны, как и для любой электромагнитной волны, интенсивность (см (7.8)) равна:

Для световой волны μ≈ 1, поэтому из (7.5) следует:

μ0 H =ε0 ε E,

откуда с учетом (8.2):

E ~ nE .

Подставим в (7.8) формулы (8.4) и (8.5). После усреднения получим:

Следовательно, интенсивность света пропорциональна квадрату амплитуды световой волны и показателю преломления. Заметим, что для

вакуума и воздуха n = 1, поэтому I ~ E 2 m (сравните с (7.9)).

Для характеристики интенсивности света с учетом его способности вызывать зрительное ощущение вводится величина Ф, называемая световым потоком. Действие света на глаз сильно зависит от длины волны. Наиболее

чувствителен глаз к излучению с длиной волны λ з = 555 нм (зеленый цвет).

Для других волн чувствительность глаза ниже, а вне интервала (400– 760 нм) чувствительность глаза равна нулю.

Световым потоком называется поток световой энергии, оцениваемый по зрительному ощущению. Единицей светового потока является люмен (лм). Соответственно, интенсивность измеряется либо в энергетических единицах (Вт/м2 ), либо в световых единицах (лм/м2 ).

Интенсивность света характеризует численное значение средней энергии, переносимой световой волной в единицу времени через единицу площади площадки, поставленной перпендикулярно направлению распространения волны. Линии, вдоль которых распространяется световая энергия, называют лучами. Раздел оптики, в котором изучаются законы распространения светового

излучения на основе представлений о световых лучах, называется геометрической, или лучевой оптикой.

§ 3. ОСНОВНЫЕ ЗАКОНЫ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ

Геометрическая оптика – это приближенное рассмотрение распространения света в предположении, что свет распространяется вдоль некоторых линий – лучей (лучевая оптика). В этом приближении пренебрегают конечностью длин волн света, полагая, что λ→ 0.

Геометрическая оптика позволяет во многих случаях достаточно хорошо рассчитать оптическую систему. Но в ряде случаев реальный расчет оптических систем требует учета волновой природы света.

Первые три закона геометрической оптики известны с древних времен. 1. Закон прямолинейного распространения света.

Закон прямолинейного распространения света утверждает, что в

однороднойсреде свет распространяется прямолинейно.

Если среда неоднородна, т. е. ее показатель преломления изменяется от точки к точке, или n = n(r) , то свет не будет распространяться по прямой. При

наличии резких неоднородностей, таких, как отверстия в непрозрачных экранах, границы этих экранов, наблюдается отклонение света от прямолинейного распространения.

2. Закон независимости световых лучей утверждает, что лучи при пересечениине возмущают друг друга . При больших интенсивностях этот закон не соблюдается, происходит рассеяние света на свете.

3 и 4. Законы отражения и преломления утверждают, что на границе раздела двух сред происходит отражение и преломление светового луча. Отраженный и преломленный лучи лежат в одной плоскости с падающим

лучом и перпендикуляром, восстановленным к границе раздела в точке падения

Угол падения равен углу отражения:

для которых показатель

Свет играет огромную роль не только в интерьере, но и в нашей жизни в целом. Ведь от правильной освещенности помещения зависит эффективность работы, а так же наше психологическое состояние. Свет дает человеку возможность не только видеть, но и оценивать цвета и формы окружающих предметов.

Конечно, для человеческих глаз наиболее комфортен естественный свет. При таком освещении все видно очень хорошо и без искажений цветов. Но не всегда естественное освещение присутствует, в темное время суток, например, приходиться обходиться искусственными источниками света.

Чтобы глаза не напрягались, и не портилось зрение, необходимо создать оптимальные условия света и тени, создавая максимально комфортное освещение.

Для глаз самое приятное освещение - естесcтвенное

Освещение, так же как и многие другие факторы, оценивается по количественным и качественным параметрам. Количественные характеристики определяются интенсивностью света, а качественные – его спектральным составом и распределением в пространстве.

Как и в чем измеряется интенсивность света?

У света есть множество характеристик и на каждую существует своя единица измерения:

  • Сила света характеризует величину световой энергии, которая переносится за определенное время в какое-либо направление. Она измеряется в канделах (кд), 1 кд приблизительно равна силе света, который излучает одна горящая свеча;
  • Яркость так же измеряется в канделах, помимо этого существуют такие единицы измерения, как стильб, апостильб и ламберт;
  • Освещенность – это отношение светового потока, который падает на определенный участок, к его поверхности. Измеряется она в люксах.

Именно освещенность является важным показателем для правильной работы зрения. Для того, чтобы определить эту величину используется специальный прибор для измерения. Называется он люксометр.

Люксометр – это прибор для измерения освещенности.

Состоит данный прибор из приемника света и измерительной части, она бывает стрелочного типа или электронного. Приемник света – это фотоэлемент, который преобразует световую волну в электрический сигнал и направляет в измерительную часть. Это устройство является фотометром и обладает заданной спектральной чувствительностью. С его помощью можно измерить не только видимый свет, но и инфракрасное излучение и т. д.

Данный прибор используется как в производственных помещениях, так и в учебных заведениях, а так же дома. Для каждого вида деятельности и занятий существуют свои нормы того, какой должна быть интенсивность света.

Комфортная интенсивность освещения

Зрительный комфорт зависит от многих факторов. Безусловно, самым приятным для человеческого глаза является солнечный свет. Но современный ритм жизни диктует свои правила, и очень часто приходится работать или просто находиться при искусственном освещении.

Производители осветительных приборов и ламп стараются создавать такие источники света, которые отвечали бы особенностям зрительного восприятия людей и создавали бы максимально комфортный по интенсивности свет.

Свет от лампы накаливания наиболее точно передает естественные оттенки

В обычных лампах накаливания в качестве источника освещения используется раскаленная пружина, а потому, этот свет наиболее похож на естественный.

Лампы разделяют на следующие категории по типу света, который они дают:

  • теплый свет, имеющий красноватые оттенки, он хорошо подходит для домашней обстановки;
  • нейтральный свет, белый, используется для освещения рабочих мест;
  • холодный свет, голубоватый, предназначен для мест, где выполняются работы высокой точности или для мест с жарким климатом.

Важно не только то, к какому типу относятся лампы, но и конструкция самого светильника или люстры: сколько лампочек вкручивается туда, куда направлен свет, закрыты или открыты плафоны – все эти особенности нужно учитывать при выборе осветительного прибора.

Нормы освещенности зафиксированы в нескольких документах, самые главные это: СНиП (строительные нормы и правила) и СанПиН (санитарные правила и нормы). Существуют также МГСН (Московские городские строительные нормы), а так же свой свод правил для каждого региона.

Именно на основе всех этих документов и принимается решение о том, какой должна быть интенсивность освещения.

Безусловно, задумываясь о том, какую люстру повесить в гостиную, спальню или кухню, никто не замеряет интенсивность освещения с помощью люксометра. Однако, знать в общих чертах какой свет будет комфортней для глаз, очень полезно.

В Таблице 1 приведены нормы освещенности для жилых помещений:

Таблица 1

В Таблице 2 привдены нормы освещенности для офисов

В домашних условиях, без специального оборудования трудно измерить освещение в помещениях, а потому для того чтобы понять, какую лампу выбрать, стоит обратить внимание на цвет (холодный, нейтральный или теплый) и количество Ватт. В помещениях для отдыха лучше использовать не слишком яркие, а в рабочих кабинетах – с более интенсивным светом.

Поскольку для глаз наиболее приятно естественное освещение, то предпочтение в домашней обстановке стоит отдавать лампам, дающим теплый свет. Когда мы приходим домой, глазам обязательно нужен отдых после напряженного рабочего дня. Правильно подобранные по яркости лампы для люстр и светильников помогут создать подходящее по интенсивности освещение.

Интенси́вность - скалярная физическая величина, количественно характеризующая мощность, переносимую волной в направлении распространения. Численно интенсивность равна усреднённой за период колебаний волны мощности излучения, проходящей через единичную площадку, расположенную перпендикулярно направлению распространения энергии. В математической форме это может быть выражено следующим образом:

где - период волны, - мощность, переносимая волной через площадку .

Интенсивность волны связана со средней плотностью энергии в волне и скоростью распространения волны следующим соотношением:

Единицей измерения интенсивности в Международной системе единиц (СИ) является Вт/м², в системе СГС - эрг/с·см².

Объёмная плотность энергии электромагнитного поля в линейной изотропной среде, как известно из электродинамики, даётся выражением (мы учли здесь также связь между векторами Е иН в электромагнитной волне):

Вектор плотности потока энергии электромагнитной волны (то, что в теории упругих волн называется вектором Умова) называется вектором Умова-Пойнтинга, или чаще просто вектором Пойнтинга Р :

Модуль среднего значения вектора Пойнтинга называется интенсивностью электромагнитной волны:

В случае синусоидальной монохроматической плоской (когда плоскости колебаний векторов Е и Н не меняются со временем) электромагнитной волны, распространяющейся в направлении х :

для интенсивности получается:

Следует обратить внимание, что интенсивность электромагнитной волны зависит от амплитуды (либо электрического, либо магнитного поля; они связаны), но не зависит от частоты волны - в отличие от интенсивности упругих механических волн.

Понятие когерентность.

В физике когерентностью называется скоррелированность (согласованность) нескольких колебательных или волновых процессов во времени, проявляющаяся при их сложении. Колебания когерентны, если разность их фаз постоянна во времени, и при сложении колебаний получается колебание той же частоты.

Классический пример двух когерентных колебаний - это два синусоидальных колебания одинаковой частоты.

Когерентность волны означает, что в различных пространственных точках волны осцилляции происходят синхронно, то есть разность фаз между двумя точками не зависит от времени. Отсутствие когерентности, следовательно - ситуация, когда разность фаз между двумя точками не постоянна, а меняется со временем. Такая ситуация может иметь место, если волна была сгенерирована не единым излучателем, а совокупностью одинаковых, но независимых (то есть нескоррелированных) излучателей.

Изучение когерентности световых волн приводит к понятиям временно́й и пространственной когерентности. При распространении электромагнитных волн в волноводахмогут иметь место фазовые сингулярности. В случае волн на воде когерентность волны определяет так называемая вторая периодичность.

Без когерентности невозможно наблюдать такое явление, как интерференция.

Интерференция волн - взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга. Сопровождается чередованием максимумов (пучностей) и минимумов (узлов) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фазнакладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

При интерференции энергия волн перераспределяется в пространстве. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды (то есть интенсивность результирующей волны) равна сумме квадратов амплитуд (интенсивностей) накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий её колебаний, обусловленных всеми некогерентными волнами в отдельности. Именно отличие результирующей интенсивности волнового процесса от суммы интенсивностей его составляющих и есть признак интерференции.

Похожие публикации