Радиоактивные изотопы, образующиеся при делении(Дайджест). Радиоактивный йод зафиксирован в семи странах европы Радиоактивный йод: что это

Европейские СМИ продолжают обсуждать новости о радиоактивном йоде, который не так давно стали фиксировать станции наблюдения сразу в нескольких странах. Главный вопрос - что вызвало выброс этого радионуклида и где произошел выброс.

Известно, что впервые превышение йода-131 было зафиксировано в Норвегии , во вторую неделю января. Первой радионуклид зафиксировала исследовательская станция Сванховд на севере Норвегии, которая расположена всего в нескольких сотнях метров от границы с Россией .

И хотя Норвегия стала первой страной, зафиксировавшей у себя радиоактивный изотоп, Франция первой проинформировала население об этом. «Первоначальные данные говорят о том, что первая фиксация произошла на севере Норвегии во вторую неделю января», - говорится в сообщении французского Института радиационной защиты и ядерной безопасности (IRSN).

Власти Норвегии заявили, что не стали оповещать об открытии из-за низкой концентрации вещества. «Данные в Сванховде были очень, очень низкими. Уровень загрязнения не вызвал обеспокоенности за людей и технику, поэтому мы не признали это достойной новостью», - заявила представитель норвежской службы радиационного контроля Астрид Лиланд. По ее словам, в стране действует сеть из 33 станций слежения, и любой человек сам может проверить данные.

Во Франции же показатели колеблются от 01, до 0,31 Бк/м3. Самые высокие показатели были отмечены в Польше - почти 6 Бк/м3. Близость первого места обнаружения йода к российской границе сразу спровоцировала появление слухов о том, что причиной выброса могли стать секретные испытания ядерного оружия в российской Арктике, и возможно в районе Новой Земли, где СССР исторически испытывал различные заряды.

Йод-131 - радионуклид с периодом полураспада 8.04 суток, также называемый радиойодом, бета- и гамма-излучатель. Биологическое действие связано с особенностями функционирования щитовидной железы. Ее гормоны - тироксин и трийодтирояин - имеют в своем составе атомы йода, поэтому в норме щитовидная железа поглощает около половины поступающего в организм йода. Железа не отличает радиоактивные изотопы йода от стабильных, поэтому накопление в щитовидной железе больших количеств йода-131 ведет к радиационному поражению секреторного эпителия и к гипотиреозу - дисфункции щитовидной железы.

Как рассказал «Газете.Ru» источник в обнинском Институте проблем мониторинга (ИПМ) окружающей среды, основных источников загрязнения атмосферы радиоактивным йодом два - этомные электростанции и фармакологическое производство.

«Атомные станции выбрасывают радиоактивный йод. Он является составляющей газоаэрозольного выброса, технологического цикла любой атомной станции», - пояснил эксперт, однако по его словам, при выбросе происходит фильтрация, чтобы большинство короткоживущих изотопов успели распасться.

Известно, что после аварий на чернобыльской станции и Фукусиме выбросы радиоактивного йода фиксировались специалистами в разных странах мира. Однако после таких аварий в атмосферу выбрасываются, и соответственно фиксируются и другие радиоактивные изотопы, в том числе цезий.

В России мониторинг содержания радиоактивного йода ведется всего в двух точках - в Курске и Обнинске . Зафиксированные в Европе выбросы- действительно исчезающе малые концентрации, учитывая существующие предельные показатели, установленные для йода. Так, в России предельная концентрация радиоактивного йода в атмосфере составляет 7,3 Бк/м3 - в миллион раз выше зафиксированного в Польше уровня.

«Эти уровни - детский сад. Это очень небольшие количества. Но если все станции мониторинга в этот период фиксировали концентрации йодf в аэрозольной и молекулярной форме, где-то был источник, был выброс», - пояснил эксперт.

Между тем в самом Обнинске находящаяся там станция наблюдения ежемесячно фиксирует наличие йод-131 в атмосфере, это связано с расположенным там источником - НИФХИ имени Карпова. Это предприятие выпускает радиофармпрепараты на основе йода-131, которые используются для диагностики и лечения рака.

К версии, что источником выброса йода-131 было фармацевтическое производство, склоняются и ряд европейских экспертов. «Поскольку был детектирован только йод-131 и никаких других веществ, мы считаем, что он происходит от какой-то фармацевтической компании, производящей радиоактивные препараты», - пояснила Лиланд изданию Motherboard. «Если бы он пришел с реактора, мы фиксировали бы другие элементы в воздухе», - считает Дидье Шампьон, глава одного из подразделений IRSN.

Эксперты вспоминают, что подобная ситуация возникла в 2011 году, когда радиоактивный йод был зафиксирован сразу в нескольких европейских странах. Интересно, что лишь на прошлой неделе ученые опубликовали статью, объяснившую выброс йода 2011 года. Они пришли к выводу, что утечка произошла из-за отказа фильтровальной системы в будапештском институте, производящем изотопы для медицинских целей.

Европейские СМИ продолжают обсуждать новости о радиоактивном йоде, который не так давно стали фиксировать станции наблюдения сразу в нескольких странах. Главный вопрос - что вызвало выброс этого радионуклида и где произошел выброс.

Известно, что впервые превышение йода-131 было зафиксировано в Норвегии, во вторую неделю января. Первой радионуклид зафиксировала исследовательская станция Сванховд на севере Норвегии,

которая расположена всего в нескольких сотнях метров от границы с Россией.

Позднее превышение было поймано на станции в финском городке Рованиеми. В течение последующих двух недель следы изотопа были обнаружены в других районах Европы — Польше, Чехии, Германии, Франции и Испании.

И хотя Норвегия стала первой страной, зафиксировавшей у себя радиоактивный изотоп, Франция первой проинформировала население об этом. «Первоначальные данные говорят о том, что первая фиксация произошла на севере Норвегии во вторую неделю января», — говорится в сообщении французского Института радиационной защиты и ядерной безопасности (IRSN).

Власти Норвегии заявили, что не стали оповещать об открытии из-за низкой концентрации вещества. «Данные в Сванховде были очень, очень низкими. Уровень загрязнения не вызвал обеспокоенности за людей и технику, поэтому мы не признали это достойной новостью», — заявила представитель норвежской службы радиационного контроля Астрид Лиланд. По ее словам, в стране действует сеть из 33 станций слежения, и любой человек сам может проверить данные.

Согласно опубликованным IRSN данным,концентрация йода, измеренная на севере Норвегии с 9 по 16 января, составляла 0,5 микробеккерелей на кубометр (Бк/м 3).

Во Франции же показатели колеблются от 01, до 0,31 Бк/м 3 . Самые высокие показатели были отмечены в Польше - почти 6 Бк/м 3 . Близость первого места обнаружения йода к российской границе сразу спровоцировала появление слухов о том, что причиной выброса могли стать секретные испытания ядерного оружия в российской Арктике, и возможно в районе Новой Земли, где СССР исторически испытывал различные заряды.

Йод-131 — радионуклид с периодом полураспада 8.04 суток, также называемый радиойодом, бета- и гамма-излучатель. Биологическое действие связано с особенностями функционирования щитовидной железы. Ее гормоны — тироксин и трийодтирояин — имеют в своем составе атомы йода, поэтому в норме щитовидная железа поглощает около половины поступающего в организм йода. Железа не отличает радиоактивные изотопы йода от стабильных, поэтому накопление в щитовидной железе больших количеств йода-131 ведет к радиационному поражению секреторного эпителия и к гипотиреозу — дисфункции щитовидной железы.

Как рассказал «Газете.Ru» источник в обнинском Институте проблем мониторинга (ИПМ) окружающей среды, основных источников загрязнения атмосферы радиоактивным йодом два — атомные электростанции и фармакологическое производство.

«Атомные станции выбрасывают радиоактивный йод. Он является составляющей газоаэрозольного выброса, технологического цикла любой атомной станции», — пояснил эксперт, однако по его словам, при выбросе происходит фильтрация, чтобы большинство короткоживущих изотопов успели распасться.

Известно, что после аварий на Чернобыльской станции и Фукусиме выбросы радиоактивного йода фиксировались специалистами в разных странах мира. Однако после таких аварий в атмосферу выбрасываются и, соответственно, фиксируются и другие радиоактивные изотопы, в том числе цезий.

В России мониторинг содержания радиоактивного йода ведется всего в двух точках — в Курске и Обнинске.
Зафиксированные в Европе выбросы — действительно исчезающе малые концентрации, учитывая существующие предельные показатели, установленные для йода. Так, в России предельная концентрация радиоактивного йода в атмосфере составляет 7,3 Бк/м 3

В миллион раз выше зафиксированного в Польше уровня.

«Эти уровни — детский сад. Это очень небольшие количества. Но если все станции мониторинга в этот период фиксировали концентрации йода в аэрозольной и молекулярной форме, где-то был источник, был выброс», — пояснил эксперт.

Между тем в самом Обнинске находящаяся там станция наблюдения ежемесячно фиксирует наличие йода-131 в атмосфере, это связано с расположенным там источником — НИФХИ имени Карпова. Это предприятие выпускает радиофармпрепараты на основе йода-131, которые используются для диагностики и лечения рака.

К версии, что источником выброса йода-131 было фармацевтическое производство, склоняются и ряд европейских экспертов. «Поскольку был детектирован только йод-131 и никаких других веществ, мы считаем, что он происходит от какой-то фармацевтической компании, производящей радиоактивные препараты», — пояснила Лиланд изданию Motherboard. «Если бы он пришел с реактора, мы фиксировали бы другие элементы в воздухе», — считает Дидье Шампьон, глава одного из подразделений IRSN.

Эксперты вспоминают, что подобная ситуация возникла в 2011 году, когда радиоактивный йод был зафиксирован сразу в нескольких европейских странах. Интересно, что лишь на прошлой неделе ученые , объяснившую выброс йода 2011 года. Они пришли к выводу, что утечка произошла из-за отказа фильтровальной системы в будапештском институте, производящем изотопы для медицинских целей.

Йод 131 - бета-, гамма-излучатель с периодом полураспада 8,1 дня. Энергия гамма-излучения 0,364 Мэв, энергия бета-излучения 0,070 Мэв. Суммарная активность препаратов, используемых с диагностической целью, составляет от 2 до 5 мккюри (300 мккюри допускается лишь при скеннировании печени и почек). При поступлении 1 мккюри йода в щитовидной железе создается доза 1,5-2 рад. Правомочность использования различных количеств йода для целей диагностики определяется клиническими показаниями (Ф. М. Лясс, 1966). Независимо от пути поступления йод быстро накапливается в организме, при этом до 90% сосредоточено в щитовидной железе. Выводится йод с мочой и калом. Его можно также обнаружить в слюне (сразу же после введения). Предельно допустимое количество при хроническом поступлении составляет 0,6 мккюри; эта величина достаточно хорошо обоснована клиническими наблюдениями как безопасная для организма человека по всем критериям.

Практика использования достаточно больших количеств радиоактивного йода с лечебной целью (до 100 мккюри), опыт аварии в Уиндскеле (Англия), данные о выпадении радиоактивных осадков ядерного взрыва на Маршалловых островах позволяют оценить степень опасности случайного поступления в организм изотопа в широком диапазоне доз.

В соответствии с характером избирательного распределения йода клинические проявления в зависимости от дозы варьируют от преходящих изменений функции щитовидной железы с учащением возможности ее бластомной метаплазии в отдаленные сроки до глубокой, рано наступающей деструкции ткани железы, что может сопровождаться и общими клиническими проявлениями лучевой болезни, включая нарушения кроветворения. В связи со сравнительно быстрым формированием лучевой нагрузки основная симптоматика развивается, как правило, в относительно ранние сроки - в первые 1-2 месяца.

По данным Д. А. Улитовского (1962) и Н. И. Улитовской (1964), избирательное облучение и Поражение щитовидной железы и ее нервнорецепторного аппарата имеют место при разовом поступлении 1-3 мкюри I131, что соответствует местной дозе 1000-3000 рад. Интегральные дозы во всем организме близки к создающимся при облучении от внешних гамма-источников в дозе 7-13 р; признаков отчетливых общих реакций в этих случаях не возникает.

Развитие клинических проявлений с возможностью летального исхода при типичных для лучевой болезни изменениях крови наблюдается при поступлении за короткие сроки 300-500 мкюри I131, что создает дозу общего облучения порядка 300-570 рад. Суммарные активности в 20-50 мкюри йода приводят к промежуточной группе клинических эффектов. При этом следует помнить, что определяющий вклад в дозу дает бета-излучение йода, т. е. имеет место определенная неравномерность распределения дозы в объеме железы и сохранение благодаря этому отдельных неповрежденных участков эпителия фолликулов. При использовании изотопов I132 и I134, являющихся мощными гамма-излучателями, биологический эффект выше благодаря равномерности облучения ткани железы.

Рейтинг: / 29
Подробности Родительская категория: Зона отчуждения Категория: Радиоактивное загрязнение

Представлено последствия выброса радиоизотопа 131 I после аварии на ЧАЭС и описание биологического действия радиойода на организм человека.

Биологическое действие радиойода

Йод-131 - радионуклид с периодом полураспада 8.04 сут., бета- и гамма-излучатель. Вследствие высокой летучести практически весь йод-131, имевшийся в реакторе (7,3 МКи), был выброшен в атмосферу. Его биологическое действие связано с особенностями функционирования щитовидной железы . Ее гормоны - тироксин и трийодтирояин - имеют в своем составе атомы йода. Поэтому в норме щитовидная железа поглощает около 50% поступающего в организм йода. Естественно, железа не отличает радиоактивные изотопы йода от стабильных. Щитовидная железа детей в три раза активнее поглощает попавший в организм радиойод. Кроме того, йод-131 легко проникает через плаценту и накапливается в железе плода.

Накопление в щитовидной железе больших количеств йода-131 ведет к радиационному поражению секреторного эпителия и к гипотиреозу - дисфункции щитовидной железы. Возрастает также риск злокачественного перерождения тканей. Минимальная доза, при которой есть риск развития гипотиреоза у детей - 300 рад, у взрослых - 3400 рад. Минимальные дозы, при которых появляется риск развития опухолей щитовидной железы, находятся в диапазоне 10-100 рад. Наиболее велик риск при дозах 1200-1500 рад. У женщин риск развития опухолей в четыре раза выше, чем у мужчин, у детей в три-четыре раза выше, чем у взрослых.

Величина и скорость всасывания, накопление радионуклида в органах, скорость выведения из организма зависят от возраста, пола, содержания стабильного йода в диете и других факторов. В этой связи при поступлении в организм одинакового количества радиоактивного йода поглощенные дозы значительно различаются. Особенно большие дозы формируются в щитовидной железе детей, что связано с малыми размерами органа, и могу в 2-10 раз превышать дозы облучения железы у взрослых.

Профилактика поступления йода-131 в организм человека

Эффективно предотвращает поступление радиоактивного йода в щитовидную железу прием препаратов стабильного йода. При этом железа полностью насыщается йодом и отвергает попавшие в организм радиоизотопы. Прием стабильного йода даже через 6 ч после разового поступления 131 I может снизить потенциальную дозу на щитовидную железу примерно в два раза, но если отложить йодопрофилактику на сутки, эффект будет небольшим.

Поступление йода-131 в организм человека может произойти в основном двумя путями: ингаляционным, т.е. через легкие, и пероральным - через потребляемые молоко и листовые овощи.

Загрязнение окружающей среды 131 I после аварии на ЧАЭС

Интенсивное выпадение 131 I в городе Припять началось по-видимому, в ночь с 26 на 27 апреля. Поступление его в организм жителей города происходило ингаляционным путем, а следовательно - зависело от времени пребывания на открытом воздухе и от степени проветривания помещений.


Значительно серьезнее была обстановка в селах, попавших в зону радиоактивных выпадений. Вследствие неясности радиационной обстановки не всем сельским жителям была своевременно проведена йодная профилактика. Основным путем поступления 131 I в организм был пищевой, с молоком (до 60% по одним данным, по другим данным - до 90%). Этот радионуклид появился в молоке коров уже на вторые-третьи сутки после аварии. Надо отметить, что корова ежесуточно съедает на пастбище корм с площади 150 м 2 и является идеальным концентратором радионуклидов в молоке. 30 апреля 1986 г. Минздравом СССР были даны рекомендации о повсеместном запрете потребления молока от коров, находящихся на пастбищах, во всех районах, примыкающих к зоне аварии. В Белоруссии скот еще находился на стойловом содержании, но в Украине коровы уже паслись. На государственных предприятиях этот запрет сработал, а вот в личных хозяйствах запретные меры обычно срабатывают хуже. Надо отметить, что в Украине тогда около 30% молока потреблялось от личных коров. В первые же дни был установлен норматив на содержание йода-13I в молоке, при соблюдении которого доза на щитовидную железу не должна была превысить 30 бэр. В первые недели после аварии концентрация радиойода в отдельных пробах молока превышала этот норматив в десятки и сотни раз.

Представить масштабы загрязнения природной среды йодом-131 могут помочь такие факты. По существующим нормативам, если плотность загрязнения на пастбище достигает 7 Ки/км 2 , следует исключить или ограничить употребление в пищу загрязненных продуктов, перевести скот на незагрязненные пастбища или фуражные корма. На десятый день после аварии (когда прошел один период полураспада йода-131), под действие этого норматива попадали Киевская, житомирская и Гомельская области УССР, весь запад Белоруссии, Калининградская область, запад Литвы и северо-восток Польши.

Если плотность загрязнения лежит в пределах 0.7-7 Ки/км 2 , то решение следует принимать в зависимости от конкретной обстановки. Такие плотности загрязнения были почти по всей Правобережной Украине, по всей Белоруссии, Прибалтике, в Брянской и Орловской областях РСФСР, на востоке Румынии и Польши, юго-востоке Швеции и юго-западе Финляндии.

Неотложная помощь при загрязнении радиойодом.

При работе в зоне, загрязненной радиоизотопами иода, с целью профилактики прием ежедневно иодида калия 0,25 г (под врачебным присмотром). Дезактивация кожных покровов водой с мылом, промывание носоглотки и полости рта. При поступлении радионуклидов в организм – внутрь иодид калия 0,2 г, иодид натрия 02, г., сайодин 0,5 или тереостатики (перхлорат калия 0,25 г). Рвотные средства или промывание желудка. Отхаркивающие с повторным назначением йодистых солей и тереостатиков. Обильное питье, мочегонные.

Литература:

Чернобыль не отпускает… (к 50-летию радиоэкологических исследований в Республике Коми). – Сыктывкар, 2009 – 120 с.

Тихомиров Ф.А. Радиоэкология иода. М., 1983. 88 с.

Cardis et al., 2005 год. Risk of Thyroid Cancer After Exposure to 131I in Childhood -- Cardis et al. 97 (10): 724 -- JNCI Journal of the National Cancer Institute

вопрос:
Содержание йода-131 больше нормы в тысячу раз! Что это значит?

Как понимать сообщения СМИ о йоде-131 (радиойод), цезии-137, стронции-90 - о ядерной катастрофе Фукусима АЭС

Радионуклидная рыба, мясо и рис - бюрократу на стол

а) Бюрократы всех мастей и всех стран (частные, государственные, политические) прикрываются бессмысленными цифрами, а "просто так" они этого бы не делали.
б) Для нормализации радиационой обстановки поднимаются "нормы".
в) Содержание долговременно опасных радионуклидов еще выше.

При разрушении реактора "мирного атома" и хранилищ ОЯТ на самом деле опасны для человеческой популяции не короткоживущий йод-131, а долгоживущие радиоактивные уран, плутоний, стронций, нептуний, америций, кюрий, углерод(14!), водород(3!) и т.п. радионуклиды, потому что природными и человеческими усилиями радиоактивные живые организмы, продукты питания, вода распространяется по всему Земному шару.

Радионуклиды - йод, цезий, стронций - являются продуктами радиоактивного распада (деления) в "топливных стержнях", или в том, что от них осталось - груде металлолома, озере-расплаве, пропитке грунта или скального основания.

Член совета Центра экологической политики России, соруководитель Программы по радиационной и ядерной безопасности Валерий Меньщиков:
"Все выводится, кроме плутония. Главное – сразу не помереть", – оптимистично заметил Валерий Меньщиков.
(2)

Обратите внимание на тот факт, что йод - это короткоживущий и выводимый из организма радиоизотоп.

Йод-131 (I-131) - период полураспада 8 дней, активность 124000 кюри/г. В следствии короткого времени жизни, йод представляет особую опасность в течении нескольких недель и опасность в несколько месяцев. Удельное образование йода-131 - примерно 2% от продуктов при взрыве бомбы деления (уран-235 и плутоний). Йод-131 легко поглощается телом, в особенности щитовидной железой.

А вот более долговременно-опасные (отдёжкой на складе радиоактивность которых не вгонишь в норму):

Цезий-137 (Cs-137) - время полураспада 30 лет, активность 87 кюри/г. Он представляет опасность в первую очередь как долговременный источник сильного гамма-излучения. Цезий, как щелочной металл, имеет некоторое сходство с калием и распределяется равномерно по всему телу. Он может выводиться из организма - период его полувыведения около 50-100 дней.

Стронций-89 (St-89) - период полураспада 52 дня (активность 28200 кюри/г). Стронций-89 представляет опасность в течении нескольких лет после взрыва. Поскольку стронций химически ведет себя подобно кальцию, он поглощается и накапливается в костях. Хотя большая его часть и выводится из организма (период полувыведения около 40 дней), чуть менее 10% стронция попадает в кости, период полувыведения из которых - 50 лет.

Стронций-90 (St-90) - период полураспада 28,1 года (активность 141 кюри/г), стронций-90 остается в опасных концентрациях на столетия. Помимо излучение бета-частицы, распадающийся атом стронция-90 превращается в изотоп иттрия - иттрий-90, тоже радиоактивный, с периодом полураспада 64,2 часа. Стронций накапливается в костях.
(1)

Нептуний-236 (Np-236) - период полураспада 154 тысячи лет.
Нептуний-237 (Np-237) - период полураспада 2,2 миллиона лет.
Нептуний-238, Нептуний-239 - соответственно 2,1 и 2,33 дня.
60-80 процентов нептуния откладывается в костях, а радиобиологический период полувыведения нептуния из организма составляет 200 лет. Это приводит к серьёзному радиационному поражению костной ткани.
Предельно допустимые количества изотопов нептуния в организме: 237Np - 0,06 мккюри (100 мкг), 238Np, 239Np - 25 мккюри (10−4 мкг).
Нептуний образуется из изотопов урана (в том числе и урана-238), а результатом распада нептуния является плутоний-238.
(3)

Плутоний, также как и нептуний, накапливается в костях и при поступлении извне. В радиоактивной смеси, поступающей с реакторов АЭС, разумеется, присутствует и полоний-210.
.

Похоже, что радиологическая разведка делается радиационного заражения местности (если вообще делается) как при "чистом мгновенном" ядерном взрыве, когда боеприпас весит несколько тонн, и в ядерную реакцию вступает, вероятно, более 10% урана и плутония из сотни-другой килограммов расщепляющихся материалов. В случае же атомного реактора АЭС всё с точностью до наоборот - тысячи тонн отработанного и полу-отработанного ядерного топлива, сотни тысяч тонн радиоактивных материалов реакторов, воды, грунтов - в которых долгоживущие столетиями радиоактивные элементы.

То есть, из оценки загрязнения АЭС методами "по йоду", я делаю вывод, это просто попытка скрыть действительно долговременные опасности от выброшенных в окружающую среду ядерных материалов с длительными периодами полураспада, которые действительно могут попасть в пищу и воду конкретному человеку.

Какой может быть состав радиоактивных как минимум тысяч тонн материалов - останков атомного реактора и окружающих его конструкций и грунтов?

Нигде не встречал попыток анализа состава разрушенного атомного реактора, ни по радиоизотопному составу, ни по химическому. И уж тем более, не встречал попыток сделать некую модель происходящих ядерных процессов. Вероятно, это строго секретные данные, что означает, что данных попросту не существует.

Поэтому придётся пользоваться очень косвенными данными из ненадёжных источников.

"Иод-131 является весомым продуктом деления урана, плутония и, косвенно, тория, составляя до 3 % продуктов деления ядер.
Иод-131 является дочерним продуктом β−-распада нуклида 131Te".
Это из Википедии.

Но нас интересуют цифры не по отношению к "продуктам деления ядер", а к общей массе радиоактивных материалов. Раз йод (очень летучий и химически активный элемент) оказался в атмосфере и воде, то и остальным радионуклидам в окружающую среду путь открыт.

Период полураспада (half-life) радиойода-131 8,02 суток, т.е. за 192 часа и 30 минут радиоактивного йода в образце становится меньше в 2 раза, из йода образуется стабильный (нерадиоактивный) ксенон почти такой же массы.

Сколько времени путешествовал радиоактивный йод от точки образования до точки измерения - неизвестно. То есть, модель связи концентрации йода с концентрациями других радиоизотов в околореаторной среде построить невозможно.

А какова концентрация в окружающей среде действительно долговременных особо-опасных при усвоении организмом радионуклидов?

Ясно одно, что массовая доля йода-131 должна быть в тысячи-сотни тысяч раз меньше, породившей его долгоживущей радиоактивной смеси останков урановых топливных ядерного реактора, конструкций и пород массой в тысячи тонн.

"Продукты деления, выпадающие из облака взрыва, представляют собой смесь примерно 80 изотопов 35 химических элементов средней части периодической системы элементов Менделеева (от цинка №30 до гадолиния №64). Почти все образующиеся ядра изотопов перегружены нейтронами, являются не стабильными и претерпевают бетта-распад с испусканием гамма-квантов. Первичные ядра осколков деления в последующем испытывают в среднем 3-4 распада и в итоге превращаются в стабильные изотопы. Таким образом, каждому первоначально образовавшемуся ядру (осколку) соответствует своя цепочка радиоактивных превращений."
(1)

Смею уверить, что и при ядерном распаде ядерного взрыва, и в топливных стержнях АЭС происходят те же ядерные реакции, только пропорции иные - в реакторах АЭС трансурановых радионуклидов больше. "Уран и трансурановые элементы остеотропны (накапливаются в костной ткани). Если плутоний откладывается в костях, время его полувыведения около 80-100 лет, т.е. он остается там практически навсегда. Так же, плутоний накапливается в печени, с периодом полувыведения 40 лет. Максимальная допустимая концентрация Pu-239 в организме 0,6 микрограмма (0,0375 микрокюри) и 0,26 микрограмма (0,016 микрокюри) для легких." (1)

При разрушении реактора "мирного атома" и хранилищ ОЯТ на самом деле опасны для человеческой популяции не короткоживущий йод-131, а долгоживущие уран, плутоний, стронций, нептуний, америций, кюрий, углерод(14!), водород(3!) и т.п. радионуклиды, потому что природными и человеческими усилиями радиоактивные живые организмы, продукты питания, вода распространяется по всему Земному шару.


Другая сторона вопроса радиоактивности:

Похожие публикации