Формула полной вероятности: теория и примеры решения задач. Условная вероятность

Тема: Понятие условной вероятности в примерах и задачах.


Немного статистики: более 90% студентов, пройдя полный курс теории вероятности, на экзамене не могут решить задачу на теорему умножения вероятностей, на формулу полной вероятности, формулу Байеса, не могут вычислить вероятность гипотез. Вопрос почему? После индивидуальных занятий с данными студентами выяснилось, что студенты пропустили мимо ушей такое важное понятие, как условная вероятность, и тупо пытались применять формулы при решении задач. После дополнительного занятия по теме "Условная вероятность в примерах и задачах" все студенты справились с индивидуальными заданиями.

Напомню вероятность бывает безусловной и условной. В самих названиях уже заключен смысл данных понятий: безусловная вероятность это вероятность события на которое не накладывается ни каких дополнительных условий, условная - значит имеются дополнительные условия.

Рассмотрим два примера:

Пример 1.Бросаем игральную кость, найти вероятность выпадения "6".

Пример 2.Событие то же самое, бросаем игральную кость, найти вероятность выпадения "6", если известно, что выпало четное число.

Вопрос: в каком примере условная вероятность, и в каком безусловная.

Ответ: в примере 1 - безусловная, в примере 2 - условная.

Вопрос: а в чем заключается условие?

Ответ: в том, что выпадет четное число.

Вопрос: по какой формуле будем находить вероятность в примере 1?

Ответ: по формуле классической вероятности.

Ответ: вероятность события это отношение числа благоприятных событий к числу всех возможных, если событие выпадение числа "6" обозначить через А, то запись будет выглядеть так

Вопрос: назовите число благоприятных и число всех возможных событий в первом примере?

Ответ: благоприятным будет только одно событие - это выпадение "6", значит n=1, число всех возможных событий m=6 (1,2,3,4,5,6)

Вопрос: ну и подставить в формулу надеюсь труда не составит.

Ответ:

Займемся решением второго примера, на условную вероятность.

Вопрос: по какой формуле будем находить условную вероятность.
Ответ: тоже по формуле условной вероятности, данная формула отличается от классической только с той лишь разницей, что на наше событие наложено ограничение - всех возможных событий не 6, а 3, потому что в условии сказано: выпало четное число - обозначим данное событие B, значит возможно выпадение "2", "4" или "6", отсюда m=3, число благоприятных событий не изменилось n=1, тогда условная вероятность события А при условии В равна


Условная вероятность может быть записана и так: Р(А/В)=1/3


Пример 3. Из коробки, содержащей 3 белых, 5 чёрных и 7 зеленых шаров наугад взяли 1 шар. Какова вероятность того, что шар оказался чёрного цвета, если известно, что вынутый шар не белый?

Решение по формуле условной вероятности,

или Р(А/В)=m/n


где m - число благоприятных событий, n - число всех возможных событий.
условие - шар не белого цвета, обозначим событие В.

число благоприятных событий - m=5 (черных шаров 5)
число всех возможных событий - n=12 (шар не белый, 5+7=12)
Подставляем в формулу, получаем условную вероятность вынуть черный шар

или Р(А/В)=5/12

Основной вопрос: в чем же проблема в применении понятия условной вероятности?

Ответ: в том, что формула условной вероятности внешне очень похожа на формулу классической вероятности и студенты, не вдумываясь в суть задачи, часто их путают или не понимают разницы.


Ну вот и все, что необходимо знать про условную вероятность. Более сложные задачи получаются когда данная формула комбинируется с теоремой умножения вероятностей. Также данное понятие применяется в формуле полной вероятности и формуле Байеса, но это уже тема следующих занятий.

И вопрос для самостоятельного решения: какая вероятность всегда больше условная или безусловная (если событие одно и то же)?

Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной . Например, часто вычисляют вероятность события В при дополнительном условии, что произошло событие А .

Условной вероятностью (два обозначения) называют вероятность события В , вычисленную в предположении, что событие А уже наступило.

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.

В частности, отсюда получаем .

Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В – появление белого шара при первом вынимании. Событие А – появление белого шара при втором вынимании.

Решение. Очевидно, что вероятность события А , если событие В произошло, будет . Вероятность события А при условии, что событие В не произошло, будет .

Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность .

Этот же результат можно получить по формуле .

Действительно, вероятность появления белого шара при первом испытании .

Найдем вероятность того, что в первом испытании появится черный шар, а во втором - белый. Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно, .

Искомая условная вероятность

Результаты совпали.

Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?

Решение . Пусть А - событие, состоящее в том, что на линию вышел трамвай маршрута №1, В - маршрута №2.

Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.

Так как все эти события совместны, то:

отсюда искомая вероятность

Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?

Решение . Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А - появление первой карты такой масти, В - появление второй карты той же масти. Событие В зависит от события А , т.к. его вероятность меняется от того, произошло или нет событие А . Поэтому придется воспользоваться теоремой умножения в ее общей форме:

Где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая - 8).

Получаем .

События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения: .

А также научились решать типовые задачи с независимыми событиями, и сейчас последует гораздо более интересное продолжение, которое позволит не только освоить новый материал, но и, возможно, окажет практическую житейскую помощь.

Кратко повторим, что такое независимость событий: события и являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события. Простейший пример – подбрасывание двух монет. Вероятность выпадения орла либо решки на одной монете никак не зависит от результата броска другой монеты.

Понятие зависимости событий вам тоже знакомо и настал черёд заняться ими вплотную.

Сначала рассмотрим традиционный набор, состоящий из двух событий: событие является зависимым , если помимо случайных факторов его вероятность зависит от появления либо непоявления события . Вероятность события , вычисленная в предположении того, что событие уже произошло , называется условной вероятностью наступления события и обозначается через . При этом события и называют зависимыми событиями (хотя, строго говоря, зависимо только одно из них) .

Карты в руки:

Задача 1

Из колоды в 36 карт последовательно извлекаются 2 карты. Найти вероятность того, что вторая карта окажется червой, если до этого:

а) была извлечена черва;
б) была извлечена карта другой масти.

Решение : рассмотрим событие: – вторая карта будет червой. Совершенно понятно, что вероятность этого события зависит от того, черву или не черву вытянули ранее.

а) Если сначала была извлечена черва (событие ), то в колоде осталось 35 карт, среди которых теперь находится 8 карт червовой масти. По классическому определению :
при условии , что до этого тоже была извлечена черва.

б) Если же сначала была извлечена карта другой масти (событие ), то все 9 черв остались в колоде. По классическому определению :
– вероятность того, что вторая карта окажется червой при условии , что до этого была извлечена карта другой масти.

Всё логично – если вероятность извлечения червы из полной колоды составляет , то при извлечении следующей карты аналогичная вероятность изменится: в первом случае – уменьшится (т.к. черв стало меньше), а во втором – возрастёт: (т.к. все червы остались в колоде).

Ответ :

Зависимых событий, разумеется, может быть и больше. Пока задача не остыла, добавим ещё одно: – третьей картой будет извлечена черва. Предположим, что произошло событие , а затем событие ; тогда в колоде осталось 34 карты, среди которых 7 черв. По классическому определению :
– вероятность наступления события при условии , что до этого были извлечены две червы.

Для самостоятельной тренировки:

Задача 2

В конверте находится 10 лотерейных билетов, среди которых 3 выигрышных. Из конверта последовательно извлекаются билеты. Найти вероятности того, что:

а) 2-й извлечённый билет будет выигрышным, если 1-й был выигрышным;
б) 3-й будет выигрышным, если предыдущие два билета были выигрышными;
в) 4-й будет выигрышным, если предыдущие билеты были выигрышными.

Краткое решение с комментариями в конце урока.

А теперь обратим внимание на один принципиально важный момент: в рассмотренных примерах требовалось найти лишь условные вероятности, при этом предыдущие события считались достоверно состоявшимися . Но ведь в действительности и они являются случайными! Так, в «разогретой» задаче извлечение червы из полной колоды – есть событие случайное, вероятность которого равна .

На практике гораздо чаще требуется отыскать вероятность совместного появления зависимых событий. Как, например, найти вероятность события , состоящего в том, что из полной колоды будет извлечена черва и затем ещё одна черва? Ответ на этот вопрос даёт

теорема умножения вероятностей зависимых событий : вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже произошло:

В нашем случае:
– вероятность того, что из полной колоды будут извлечены 2 червы подряд.

Аналогично:
– вероятность того, что сначала будет извлечена карта другой масти и затем черва.

Вероятность события получилась заметно больше вероятности события , что, в общем-то, было очевидно безо всяких вычислений.

И, само собой, не нужно питать особых надежд, что из конверта с десятью лотерейными билетами (Задача 2) вы вытяните 3 выигрышных билета подряд:

Да, совершенно верно – теорема умножения вероятностей зависимых событий естественным образом распространяется и на бОльшее их количество.

Закрепим материал несколькими типовыми примерами:

Задача 3

В урне 4 белых и 7 черных шаров. Из урны наудачу один за другим извлекают два шара, не возвращая их обратно. Найти вероятность того, что:

а) оба шара будут белыми;
б) оба шара будут чёрными;
в) сначала будет извлечён белый шар, а затем – чёрный.

Обратите внимание на уточнение «не возвращая их обратно». Этот комментарий дополнительно подчёркивает тот факт, что события зависимы. Действительно, а вдруг извлечённые шары возвращают обратно? В случае возвратной выборки вероятности извлечения чёрного и белого шара меняться не будут, а в такой задаче уже следует руководствоваться теоремой умножения вероятностей НЕзависимых событий .

Решение : всего в урне: 4 + 7 = 11 шаров. Поехали:

а) Рассмотрим события – первый шар будет белым, – второй шар будет белым и найдём вероятность события , состоящего в том, что 1-й шар будет белым и 2-й белым.

По классическому определению вероятности: . Предположим, что белый шар извлечён, тогда в урне останется 10 шаров, среди которых 3 белых, поэтому:
– вероятность извлечения белого шара во 2-м испытании при условии, что до этого был извлечён белый шар.


– вероятность того, что оба шара будут белыми.

б) Найдём вероятность события , состоящего в том, что 1-й шар будет чёрным и 2-й чёрным

По классическому определению: – вероятность того, что в 1-м испытании будет извлечён чёрный шар. Пусть извлечён чёрный шар, тогда в урне останется 10 шаров, среди которых 6 чёрных, следовательно: – вероятность того, что во 2-м испытании будет извлечён чёрный шар при условии, что до этого был извлечен чёрный шар.

По теореме умножения вероятностей зависимых событий:
– вероятность того, что оба шара будут чёрными.

в) Найдём вероятность события (сначала будет извлечён белый шар и затем чёрный)

После извлечения белого шара (с вероятностью ) в урне останется 10 шаров, среди которых 3 белых и 7 чёрных, таким образом: – вероятность того, что во 2-м испытании будет извлечён чёрный шар при условии, что до этого был извлечен белый шар.

По теореме умножения вероятностей зависимых событий:
– искомая вероятность.

Ответ :

Данную задачу нетрудно проверить через теорему сложения вероятностей событий, образующих полную группу . Для этого найдём вероятность 4-го недостающего события: – того, что сначала будет извлечён чёрный шар и затем белый.

События образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
,что и требовалось проверить.

И сразу же предлагаю проверить, насколько хорошо вы усвоили изложенный материал:

Задача 4

Какова вероятность того, что из колоды в 36 карт будут извлечены два туза подряд?

Задача 5

В урне 6 черных, 5 красных и 4 белых шара. Последовательно извлекают три шара. Найти вероятность того, что

а) третий шар окажется белым, если до этого был извлечён черный и красный шар;
б) первый шар окажется черным, второй – красным и третий – белым.

Решения и ответы в конце урока.

Надо сказать, что многие из рассматриваемых задач разрешимы и другим способом, но чтобы не возникло путаницы, пожалуй, вообще о нём умолчу.

Наверное, все заметили, что зависимые события возникают в тех случаях, когда осуществляется некоторая цепочка действий. Однако сама по себе последовательность действий ещё не гарантируют зависимость событий. Пусть, например, студент наугад отвечает на вопросы какого-нибудь теста – данные события хоть и происходят одно за другим, но незнание ответа на один вопрос никак не зависит от незнания других ответов =) Хотя, закономерности тут, конечно, есть =) Тогда совсем простой пример с неоднократным подбрасыванием монеты – сей увлекательный процесс даже так и называется: повторные НЕзависимые испытания .

Я как мог, старался отсрочить этот момент и подбирать разнообразные примеры, но если в задачах на теорему умножения независимых событий хозяйничают стрелки, то здесь происходит самое настоящее нашествие урн с шарами =) Поэтому никуда не деться – снова урна:

Задача 6

Из урны, в которой находится 6 белых и 4 черных шара, извлекаются наудачу один за другим три шара. Найти вероятность того, что:

а) все три шара будут черными;
б) будет не меньше двух шаров черного цвета.

Решение :всего: 6 + 4 = 10 шаров в урне.

Событий в данной задаче будет многовато, и в этой связи целесообразнее использовать смешанный стиль оформления, обозначая прописными латинскими буквами только основные события. Надеюсь, вы уже поняли, по какому принципу подсчитываются условные вероятности.

а) Рассмотрим событие: – все три шара будут черными.

По теореме умножения вероятностей зависимых событий:

б) Второй пункт интереснее, рассмотрим событие: – будет не меньше двух шаров черного цвета. Данное событие состоит в 2 несовместных исходах: либо все шары будут чёрными (событие ) либо 2 шара будут чёрным и 1 белым – обозначим последнее событие буквой .

Событие включается в себя 3 несовместных исхода:

в 1-м испытании извлечён белый и во 2-м и в 3-м испытаниях – чёрные шары
или
и во 2-м – БШ и в 3-м – ЧШ
или
в 1-м испытании извлечён ЧШ и во 2-м – ЧШ и в 3-м – БШ.

Желающие могут ознакомиться с более трудными примерами из сборника Чудесенко , в которых перекладываются несколько шаров. Особым любителям предлагаю задачи повышенной комбинационной сложности – с двумя последовательными перемещениями шаров из 1-й во 2-ю урну, из 2-й в 3-ю и финальным извлечением шара из последней урны – смотрите последние задачи файла Дополнительные задачи на теоремы сложения и умножения вероятностей . Кстати, там немало и других интересных заданий.

А в заключение этой статьи мы разберём прелюбопытнейшую задачу, которой я вас заманивал на самом первом уроке =) Даже не разберём, а проведём небольшое практическое исследование. Выкладки в общем виде будут слишком громоздкие, поэтому рассмотрим конкретный пример:

Петя сдаёт экзамен по теории вероятностей, при этом 20 билетов он знает хорошо, а 10 плохо. Предположим, в первый день экзамен сдаёт часть группы, например, 16 человек, включая нашего героя. В общем, ситуация до боли знакома: студенты один за другим заходят в аудиторию и тянут билеты.

Очевидно, что последовательное извлечение билетов представляет собой цепь зависимых событий, и возникает насущный вопрос : в каком случае Пете с бОльшей вероятностью достанется «хороший» билет – если он пойдёт «в первых рядах», или если зайдёт «посерединке», или если будет тянуть билет в числе последних? Когда лучше заходить?

Сначала рассмотрим «экспериментально чистую» ситуацию, в которой Петя сохраняет свои шансы постоянными – он не получает информацию о том, какие вопросы уже достались однокурсникам, ничего не учит в коридоре, ожидая своей очереди, и т.д.

Рассмотрим событие: – Петя зайдёт в аудиторию самым первым и вытянет «хороший» билет. По классическому определению вероятности: .

Как изменится вероятность извлечения удачного билета, если пропустить вперёд отличницу Настю? В этом случае возможны две несовместные гипотезы:

– Настя вытянет «хороший» (для Пети) билет;
– Настя вытянет «плохой» билет, т.е. увеличит шансы Пети.

Событие же (Петя зайдёт вторым и вытянет «хороший» билет) становится зависимым .

1) Предположим, что Настя с вероятностью «увела» у Пети один удачный билет. Тогда на столе останутся 29 билетов, среди которых 19 «хороших». По классическому определению вероятности:

2) Теперь предположим, что Настя с вероятностью «избавила» Петю от 1-го «плохого» билета. Тогда на столе останутся 29 билетов, среди которых по-прежнему 20 «хороших». По классическому определению:

Используя теоремы сложения вероятностей несовместных и умножения вероятностей зависимых событий, вычислим вероятность того, что Петя вытянет «хороший» билет, будучи вторым в очереди:

Вероятность… осталось той же! Хорошо, рассмотрим событие: – Петя пойдёт третьим, пропустив вперёд Настю и Лену, и вытащит «хороший» билет.

Здесь гипотез будет побольше: дамы могут «обокрасть» джентльмена на 2 удачных билета, либо наоборот – избавить его от 2 неудачных, либо извлечь 1 «хороший» и 1 «плохой» билет. Если провести аналогичные рассуждения, воспользоваться теми же теоремами, то… получится такое же значение вероятности !

Таким образом, чисто с математической точки зрения, без разницы, когда идти – первоначальные вероятности останутся неизменными. НО . Это только усреднённая теоретическая оценка, так, например, если Петя пойдёт последним, то это вовсе не значит, что ему останутся на выбор 10 «хороших» и 5 «плохих» билетов в соответствии с его изначальными шансами. Данное соотношение может варьироваться в лучшую или худшую сторону, однако всё же маловероятно, что среди билетов останется «одна халява», или наоборот – «сплошной ужас». Хотя «уникальные» случаи не исключены – всё-таки тут не 3 миллиона лотерейных билетов с практически нулевой вероятностью крупного выигрыша. Поэтому «невероятное везение» или «злой рок» будут слишком преувеличенными высказываниями.

Математика и «чистый эксперимент» – это хорошо, но какой стратегии и тактики всё же выгоднее придерживаться в реальных условиях ? Безусловно, следует принять во внимание субъективные факторы, например, «скидку» преподавателя для «храбрецов» или его усталость к концу экзамена. Зачастую эти факторы могут быть даже решающими, но в заключительных рассуждениях я постараюсь не сбрасывать со счетов и дополнительные вероятностные аспекты:

Если Вы готовы к экзамену хорошо, то, наверное, лучше идти «в первых рядах». Пока билетов полный комплект, постулат «маловозможные события не происходят » работает на Вас гораздо в бОльшей степени. Согласитесь, что намного приятнее иметь соотношение «30 билетов, среди которых 2 плохих», чем «15 билетов, среди которых 2 плохих». А то, что два неудачных билета на отдельно взятом экзамене (а не по средней теоретической оценке!) так и останутся на столе – вполне и вполне возможно.

Теперь рассмотрим «ситуацию Пети» – когда студент готов к экзамену достаточно хорошо, но с другой стороны, и «плавает» тоже неплохо. Иными словам, «больше знает, чем не знает». В этом случае целесообразно пропустить вперёд 5-6 человек, и ожидать подходящего момента вне аудитории. Действуйте по ситуации. Довольно скоро начнёт поступать информация, какие билеты вытянули однокурсники (снова зависимые события!) , и на «заигранные» вопросы можно больше не тратить силы – учите и повторяйте другие билеты, повышая тем самым первоначальную вероятность своего успеха. Если «первая партия» экзаменующихся «избавила» вас сразу от 3-4 трудных (лично для Вас) билетов, то выгоднее как можно быстрее попасть на экзамен – именно сейчас шансы значительно возросли. Постарайтесь не упускать момент – всего несколько пропущенных вперёд человек, и преимущество, скорее всего, растает. Если же наоборот, «плохих» билетов вытянули мало – ждите. Через несколько человек эта «аномалия» опять же с большой вероятностью, если не исчезнет, то сгладится в лучшую сторону. В «обычном» и самом распространённом случае выгода тоже есть: расклад «24 билета/8 плохих» будет лучше соотношения «30 билетов/10 плохих». Почему? Трудных билетов теперь не десять, а восемь! С удвоенной энергией штудируем материал!

Если Вы готовы неважно или плохо, то само собой, лучше идти в «последних рядах» (хотя возможны и оригинальные решения, особенно, если нечего терять) . Существует небольшая, но всё же ненулевая вероятность, что Вам останутся относительно простые вопросы + дополнительная зубрёжка + шпоры, которые отдадут отстрелявшиеся сокурсники =) И, да – в совсем критической ситуации есть ещё следующий день, когда экзамен сдаёт вторая часть группы;-)

Какой можно сделать вывод? Субъективный оценочный принцип «кто идёт раньше, тот готов лучше» находит внятное вероятностное обоснование!

Пусть А и В – два события, рассматриваемые в данном испытании. При этом наступление одного из событий может влиять на возможность наступления другого. Например, наступление события А может влиять на событие В или наоборот. Для учёта такой зависимости одних событий от других вводится понятие условной вероятности.

Определение. Если вероятность события В находится при условии, что событие А произошло, то получаемая вероятность события В называется условной вероятностью события В . Для обозначения такой условной вероятности используются символы: р А (В ) или р (В / А ).

Замечание 2 . В отличие от условной вероятности, рассматривается и “безусловная” вероятность, когда какие-либо условия наступления некоторого события В отсутствуют.

Пример . В урне 5 шаров, среди которых 3 красных и 2 синих. Поочерёдно из неё извлекают по одному шару с возвратом и без возврата. Найти условную вероятность извлечения во второй раз красного шара при условии, что в первый раз извлечён: а) красный шар; б) синий шар.

Пусть событие А – извлечение красного шара в первый раз, а событие В – извлечение красного шара во второй раз. Очевидно, что р (А ) = 3 / 5; тогда в случае, когда вынутый 1-й раз шар возвращается в урну, р (В )=3/5. В случае же когда вынутый шар не возвращается, вероятность извлечения красного шара р (В ) зависит от того, какой шар был извлечён в первый раз – красный (событие А ) или синий (событие ). Тогда в первом случае р А (В ) = 2 / 4, а во втором (В ) = 3 / 4.

Теорема умножения вероятностей событий, одно из которых совершается при условии совершения другого

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло:

р (А ∙ В ) = р (А ) ∙ р А (В ) . (1.7)

Доказательство. Действительно, пусть n – общее число равновозможных и несовместных (элементарных) исходов испытания. И пусть n 1 – число исходов, благоприятствующих событию А , которое наступает вначале, а m – число исходов, в которых наступает событие В в предположении, что событие А наступило. Таким образом, m – это число исходов, благоприятствующих событию В. Тогда получим:

Т.е. вероятность произведения нескольких событий равна произведению вероятности одного из этих событий на условные вероятности других, причём условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли.

Пример. В команде из 10 спортсменов 4 мастера спорта. По жеребьёвке из команды выбирают 3-х спортсменов. Какова вероятность того, что все выбранные спортсмены – мастера спорта?

Решение. Приведём задачу к “урновой” модели, т.е. будем считать, что в урне, содержащей 10 шаров, имеется 4 красных шара и 6 белых. Из этой урны наудачу извлекаются 3 шара (выборка S = 3). Пусть событие А состоит в извлечении 3-х шаров. Задачу можно решить двумя способами: по классической схеме и по формуле (1.9).

Первый способ, основанный на формуле комбинаторики:

Второй способ (по формуле (1.9)). Из урны последовательно без возвращения извлекаются 3 шара. Пусть А 1 – первый извлечённый шар красный, А 2 – второй извлечённый шар красный, А 3 – третий извлечённый шар красный. Пусть также событие А означает, что все 3 извлечённых шара – красные. Тогда: А = А 1 ∙ (А 2 / А 1) ∙ А 3 / (А 1 ∙ А 2), т.е.

Пример. Пусть из совокупности карточек а, а, р, б, о, т последовательно извлекаются карточки по одной. Какова вероятность получения слова “работа ” при последовательном складывании их в одну строку слева направо?

Пусть В – событие, при котором получается заявленное слово. Тогда по формуле (1.9) получим:

р (В ) = 1/6 ∙ 2/5 ∙ 1/4 ∙ 1/3 ∙ 1/2 ∙ 1/1 = 1/360.

Теорема умножения вероятностей приобретает наиболее простой вид, когда произведение образуется независимыми друг от друга событиями.

Определение. Событие В называется независимым от события А , если его вероятность не меняется от того, произошло событие А или нет. Два события называются независимыми (зависимыми), если появление одного из них не изменяет (изменяет) вероятность появления другого. Таким образом, для независимых событий р(В/ A ) = р (В ) или = р (В ), а для зависимых событий р (В/ A )

Лекция 4

Принцип практической невозможности маловероятных событий

Если случайное событие имеет очень маленькую вероятность, то практически можно считать, что в единичном испытании это событие не наступит. Все зависит от конкретной задачи. Если вероятность нераскрытия парашюта 0,01, то такой парашют применять нельзя. Если электричка опоздает с вероятностью 0,01 то можно быть уверенным что она прибудет вовремя.

Достаточно малую вероятность, при которой в данной задаче событие можно считать практически невозможным, называют уровнем значимости. На практике обычно принимают уровни значимости от 0,01 до 0,05.

Если случайное событие имеет вероятность очень близкую к единице, то практически можно считать, что в единичном испытании это событие наступит.

Условная вероятность

Произведением двух событий A и B называют событие АВ, состоящее в совместном появлении (совме­щении) этих событий. Например, если A - деталь годная, В - деталь окрашенная, то АВ - деталь годна и окрашена.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событ ий. Например, если A , B , C - появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то ABC - выпадение «герба» во всех трех испытаниях.

Во введении случайное событие определено как событие, которое при осуществлении совокупности усло­вий S может произойти или не произойти.

Если при вы­числении вероятности события никаких других ограни­чений, кроме условий S, не налагается, то такую вероят­ность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной.

Например, часто вычисляют вероятность собы­тия B при дополнительном условии, что произошло со­бытие A . Безусловная вероятность, строго говоря, является условной, поскольку предполагается осуществление условий S.

Условной вероятностью Р A (В) или называют вероятность события B, вычисленную в предположении, что событие A уже наступило

Условная вероятность вычисляется по формуле

. (4.1)

Эту формулу можно доказать исходя из классического определения вероятности.

Пример 3. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероят­ность появления белого шара при втором испытании (событие В ), если при первом испытании был извлечен черный шар (событие А ).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность Р А (В ) = 3/5.

Этот же результат можно получить по формуле

Р A (В ) =P (АВ )/P (А) (P (А ) > 0).

Действительно, вероятность появления белого шара при первом ис­пытании


P (A ) = 3/6 =1/2.

Найдем вероятность P (АВ ) того, что в первом испытании по­явится черный шар, а во втором - белый по формуле (3.1). Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений = 6 5 = 30. Из этого числа исходов событию АВ благоприятствуют 3 3=9 исходов. Следовательно, P (АВ ) =9/30 = 3/10.

Условная вероятность P А (В ) =P (АВ )/Р (А ) = (3/10)/(1/2) = 3/5. Получен прежний результат.

Похожие публикации