Магнитное действие тока. Опыт Эрстеда. Магнитные действия электрического тока

Наличие тока в электроцепи всегда проявляется каким-либо действием. Например, работа при конкретной нагрузке или какое-то сопутствующее явление. Следовательно, именно действие электротока говорит о его присутствии как таковом в той или иной электроцепи. То есть, если работает нагрузка, то ток имеет место быть.

Известно, что электрический ток вызывает различного рода действия. Например, к таковым относятся тепловые, химические, магнитные, механические или световые. При этом различные действия электрического тока способны проявлять себя одновременно. Более подробно о всех проявлениях мы расскажем Вам в данном материале.

Тепловое явление

Известно, что температура проводника повышается при прохождении через него тока. В качестве таких проводников выступают различные металлы или их расплавы, полуметаллы или полупроводники, а также электролиты и плазма. Например, при пропускании через проволоку из нихрома электрического тока происходит ее сильное нагревание. Данное явление используют в приборах нагрева, а именно: в электрических чайниках, кипятильниках, обогревателях и т.п. Электродуговая сварка отличается самой большой температурой, а именно нагрев электродуги может достигать до 7 000 градусов по Цельсию. При такой температуре достигается легкое расплавление металла.

Количество выделяемой теплоты напрямую зависит от того, какое напряжение было приложено к данному участку, а также от электротока и времени его прохождения по цепи.

Для расчета объемов выделяемой теплоты используется или напряжение, или сила тока. При этом необходимо знание показателя сопротивления в электроцепи, поскольку именно оно провоцирует нагрев из-за ограничения тока. Также количество тепла можно определить при помощи тока и напряжения.

Химическое явление

Химическое действие электротока заключается в электролизе ионов в электролите. Анод при электролизе присоединяет к себе анионы, катод – катионы.

Иными словами, во время электролиза на электродах источника тока происходит выделение определенных веществ.

Приведем пример: в кислотный, щелочной или же солевой раствор опускаются два электрода. После пропускается по электроцепи ток, что провоцирует создание положительного заряда на одном из электродов, на другом – отрицательного. Ионы, которые находятся в растворе, откладываются на электроде с иным зарядом.

Химическое действие электротока применяется в промышленности. Так, используя данное явление, осуществляют разложение воды на кислород и водород. Кроме того, при помощи электролиза получают металлы в их чистом виде, а также осуществляют гальваническое покрытие поверхности.

Магнитное явление

Электрический ток в проводнике любого агрегатного состояния создает магнитное поле. Иными словами, проводник при электрическом токе наделяется магнитными свойствами.

Таким образом, если к проводнику, в котором протекает электроток, приблизить магнитную стрелку компаса, то та начнет поворачиваться и займет к проводнику перпендикулярное положение. Если же на сердечник из железа намотать данный проводник и пропустить сквозь него постоянный ток, то данный сердечник примет свойства электромагнита.

Природа магнитного поля всегда заключается в наличии электрического тока. Объясним: движущиеся заряды (заряженные частицы) образуют магнитное поле. При этом токи противоположного направления отталкиваются, а одинакового направления – притягиваются. Данное взаимодействие обосновано магнитным и механическим взаимодействием магнитных полей электротоков. Выходит, что магнитное взаимодействие токов первостепенно.

Магнитное действие применяется в трансформаторах и электромагнитах.

Световое явление

Самый простой пример светового действия – лампа накаливания . В данном источнике света спираль достигает нужной температурной величины посредством проходящего сквозь нее тока до состояния белого каления. Тем самым и излучается свет. В традиционной лампочке накаливания всего лишь пять процентов всей электроэнергии расходуется на свет, остальная же львиная доля преобразуется в тепло.

Более современные аналоги, например, люминесцентные лампы наиболее эффективно преобразуют электроэнергию в свет. То есть, около двадцати процентов всей энергии лежит в основе света. Люминофор принимает УФ-излучение, идущее от разряда, что возникает в ртутных парах или в инертных газах.

Самая эффективная реализация светового действия тока происходит в . Электрический ток, проходя через pn-переход, провоцирует рекомбинацию носителей заряда с излучением фотонов. Лучшими led излучателями света являются прямозонные полупроводники. Изменяя состав данных полупроводников, возможно создание светодиодов для различных световых волн (разной длины и диапазона). Коэффициент полезного действия светодиода достигает 50 процентов.

Механическое явление

Напомним, что вокруг проводника с электрическим током возникает магнитное поле. Все магнитные действия преобразуются в движение. Примером служат электрические двигатели , магнитные подъемные установки, реле и др.

В 1820 году Андре Мари Ампер вывел известный всем «Закон Ампера», который как раз описывает механическое действие одного электротока на другой.

Данный закон гласит, что параллельные проводники с электрическим током одинакового направления испытывают притяжение друг другу, а противоположного направления, наоборот, отталкивание.

Также закон ампера определяет величину силы, с которой магнитное поле воздействует на небольшой отрезок проводника с электротоком. Именно данная сила лежит в основе функционирования электрического двигателя.

О причинах возникновения и природе магнитно-силовых линий (МСЛ), возникающих вблизи постоянных магнитов и проводников с током. В предыдущей статье я высказал гипотезу, о том, что магнитное поле вблизи постоянного магнита или проводника с током представляет собой интерференционную картину из МСЛ различной интенсивности. В термин МСЛ я вкладываю определенный физический смысл. Это не просто геометрические линии, а часть сложной структуры магнитного поля, состоящая, в свою очередь, из микроскопических волн, обладающих магнитными свойствами. При воздействии магнитного поля постоянного магнита на кусок железа или на железные опилки это поле является внешним (ВМП), по отношению к куску железа или железным опилкам. ВМП вначале индуцирует собственное магнитное поле (СМП) в куске железа или в железных опилках, а затем уже взаимодействует с этим СМП, посредством их МСЛ.

Аналогично это касается и проводников с током. Пока в проводниках замкнутой цепи есть ток (а значит, есть СМП вокруг проводников), ВМП взаимодействует с СМП проводников посредством их МСЛ. Когда в проводнике нет тока, а значит, и нет МСЛ вокруг проводника, ВМП не действует на сам проводник, хотя его МСЛ пронизывают микроструктуру проводника.

В этой статье поговорим о взаимодействии магнитов и проводников с током посредством МСЛ.

Вспомним, что известно об этом из научных публикаций. Как уже было сказано ранее, Г.Эрстед в 1820 году экспериментально продемонстрировал взаимодействие магнита и проводника с током. Поведение магнитной стрелки вблизи проводника с постоянным током говорило о том, что вокруг этого проводника находится магнитное поле. Впоследствии была установлена тесная связь магнитного поля с током. Обобщая свои опыты, Эрстед показал, что наличие тока в проводниках замкнутой цепи, какова бы не была их природа, всегда влечет за собой образование МСЛ магнитного поля вокруг проводников этой цепи. Именно взаимодействие МСЛ проводника с МСЛ магнитной стрелки заставляет ее поворачиваться одним из своих полюсов к проводнику с током.

В 1821 году французский ученый А.Ампер установил взаимосвязь электричества и магнетизма в случае прохождения по цепи электрического тока и отсутствия такой взаимосвязи у статического электричества.

Чтобы проверить является ли указанное взаимодействие МСЛ обоюдным, т.е. действует ли магнит на проводник с током, был проведен следующий опыт (рис.1). Над неподвижным постоянным магнитом подвешивали проводник с постоянным током. Оказалось, что проводник с током ведет себя аналогично магнитной стрелке.

Интересен опыт с гибким проводником, который расположен в непосредственной близости к параллельно полосовому магниту. Когда в проводнике появлялся ток, то он обвивался вокруг полосового магнита (рис.2). Это говорило о том, что вокруг каждого участка проводника с током появляются МСЛ, которые взаимодействуют с МСЛ полосового магнита.

Такой же вывод был сделан и Д.Араго, который в своем опыте обратил внимание на то, что если погрузить изолированный провод, по которому идет ток, в металлические опилки, то опилки пристают к нему по всей длине как к магниту. При выключении тока опилки отпадают.

Аналогичные взаимодействия были установлены между двумя, находящимися вблизи друг от друга, проводниками с постоянным током. В опыте (рис.3) два параллельных проводника установлены на небольшом расстоянии друг от друга. Эти проводники притягивались или отталкивались в зависимости от его направления. В этих и других опытах было показано, что магнитное действие электрического тока аналогично взаимодействию двух магнитов.

Рассмотренные нами опыты по взаимодействию магнитных полей показывают, что все взаимодействия и в случае с постоянными магнитами, и между постоянными магнитами и проводниками с током, а также двумя проводниками с током между собой сводятся к взаимодействию магнитных полей посредством их МСЛ. С учетом того, что на практике большое количество технических устройств создано на основе взаимодействия магнитных полей, в частности, на основе взаимодействия магнитных полей и проводников с током, следует привести некоторые опыты, которые понадобятся нам позднее для объяснения некоторых явлений в этой области.

Рассмотрим следующий опыт по взаимодействию магнитного поля и проводника с током. В магнитном поле подковообразного магнита расположен прямолинейный участок проводника с током. (рис.4). Изменяя направление тока в проводнике, и меняя его расположение относительно направления магнитного поля можно определить направление силы, действующей на проводник. При включении тока (в зависимости от его направления) проводник может втягиваться в магнит или выталкиваться из магнита. При этом магнитное поле действует на проводник с током только тогда, когда он расположен перпендикулярно направлению МСЛ поля. При параллельном расположении проводника и МСЛ поля взаимодействия не происходит.

Сила, действующая на проводник с током в магнитном поле, определяется из соотношения:

F= k*H*I*L*sina,

где H- напряженность магнитного поля, I-сила тока, L- длина прямолинейного участка проводника, а- угол между H и I.

Это соотношение носит название закона Ампера. На практике в большинстве случаев приходится иметь дело с проводниками различной формы, по которым протекает ток, и действие магнитного поля на такие проводники с током имеет довольно сложный характер. Посмотрим, как магнитное поле действует на простые формы проводников с током в виде витка или соленоида.

Виток с током, как показали опыты, подобен плоскому магниту, полюса которого (северный и южный) находятся на противоположных плоскостях витка. Полюса перпендикулярны к плоскостям витка с током. Определить какой из этих полюсов северный, а какой южный можно по правилу буравчика. Северный полюс витка с током определяется по направлению его рукоятки вращения – аналогия направления МСЛ. Если ввинчивать буравчик по направлению тока, то выходящие из плоскости витка МСЛ укажут на северный полюс. Магнитные полюса соленоида определяют таким же образом.

Внешнее магнитное поле, воздействуя на виток с током, стремится повернуть его так, чтобы МСЛ витка были параллельны МСЛ внешнего магнитного поля. Для анализа сил, действующих на виток с током, удобно сделать его прямоугольной формы. В этом случае, предположим, что две стороны витка параллельны направлению магнитного поля, а две другие перпендикулярны (рис.5). На первые две стороны витка магнитное поле не действует, а на две другие стороны витка действуют равные и противоположные магнитные силы, создаваемые противоположным направлением тока. Эти силы образуют вращающий момент, поворачивающий виток с током плоскостью перпендикулярно к направлению магнитного поля. На две другие стороны витка магнитное поле действует двумя равными, но противоположно направленными силами, которые стремятся деформировать (сжать или растянуть) виток в зависимости от направления тока.

На основании результатов приведенных и других опытов можно сделать следующие выводы.

Магнитное поле действует на прямолинейный участок проводника с током с силой, направление которой перпендикулярно к направлению тока и направлению МСЛ магнитного поля;

Магнитное поле создает вращающий момент, который стремится повернуть виток или соленоид так, чтобы направление от южного полюса витка или соленоида к северному полюсу совпало с направлением поля;

Магнитное поле не действует на проводники с током, расположенные вдоль направления МСЛ;

МСЛ это не просто геометрические линии, а часть сложной структуры магнитного поля, состоящая, в свою очередь, из микроскопических волн, обладающих магнитными свойствами.

О природе и особенностях этих и других сил мы поговорим в следующей статье.

Марио Льоцци

ОПЫТ ЭРСТЕДА

Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались доказать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнитостатических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим флюидом» и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (1761-1835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (1803-1869), Пьетро Конфильякки (1777-1844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать,- это обычное электростатическое действие.

Когда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной «Experimenta circa effectum conflictus electrici in acum magneticam» датский физик Ганс Христиан Эрстед (1777-1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь, долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа. В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является «силой поворачивающей». Значение этого факта чувствовалось, уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника «электрической материи, соответственно положительной и отрицательной».

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «силовых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнить», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию».

Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон. Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении тока в проводнике стрелка начинает колебаться с периодом, зависящим от электромагнитной силы, действующей на полюса при различных расстояниях от центра стрелки до проводника с током. Измерив эти расстояния, Био и Савар вывели носящий теперь их имя хорошо известный закон, который в своей первой формулировке не учитывал интенсивности тока (ее тогда не умели еще измерять).

Узнав о результатах опытов Био и Савара, Лаплас заметил, что действие тока можно рассматривать как результат отдельных действий на полюса стрелки бесконечного числа бесконечно малых элементов, на которые можно разделить ток, и заключил из этого, что каждый элемент тока действует на каждый полюс с силой, обратно пропорциональной квадрату расстояния этого элемента от полюса. О том, что Лаплас принял участие в обсуждении этой проблемы, говорится у Био в его работе «Precis elementaire de physique ехрёrimentale» (2-е изд., II, Париж, 1821, стр. 122). В сочинениях же Лапласа, насколько нам известно, нет никакого намека на такое замечание, из чего можно заключить, что он, видимо, высказал это в устной дружеской беседе с самим Био.

Чтобы пополнить свои сведения об этой элементарной силе, Био попытался, на этот раз один, определить опытным путем, изменяется ли и если изменяется, то каким образом действие элемента тока на полюс с изменением угла, образуемого направлением тока и прямой, соединяющей середину элемента с полюсом. Опыт состоял в сравнении того, какое действие оказывает на одну и ту же стрелку параллельный ей ток и ток, направленный под углом. Из данных опыта Био путем расчета, которого он не опубликовал, но который, безусловно, был ошибочным, как это показал в 1823 г. Ф. Савари (1797-1841), определил, что эта сила пропорциональна синусу угла, образуемого направлением тока и прямой, соединяющей рассматриваемую точку с серединой элемента тока. Таким образом, то, что сейчас называют «первым элементарным законом Лапласа», в значительной мере является открытием Био.

ГАЛЬВАНОМЕТР

Упомянутый уже нами опыт Араго, объяснявшийся многими физиками того времени тем, что провод, по которому проходит ток, намагничивается, был сразу правильно понят Ампером, тотчас же предсказавшим, а затем вскоре и подтвердившим экспериментально, что стальной брусок, помещенный внутри спирали, по которой проходит ток, приобретает постоянную намагниченность. Таким образом, был найден новый метод намагничивания, гораздо более эффективный, простой и удобный, нежели прежние. Но самое главное, этим был дан толчок для создания простого, но очень ценного приспособления - электромагнита, который используется в многочисленных научных и технических приборах. Первый подковообразный электромагнит сделал в 1825 г. американец Уильям Стерджен (1783- 1850); этот электромагнит немало удивил исследователей быстротой намагничивания и размагничивания бруска мягкого железа при включении или выключении тока в проводнике, которым был обмотан брусок. Конструкцию Стерджена улучшили одновременно и независимо друг от друга в 1831 г. Молль (1785-1838) и американец Джозеф Генри (1797-1878).

За первой, написанной на латинском языке статьей Эрстеда последовала вторая, написанная по-немецки, которая тем не менее осталась малоизвестной. В ней Эрстед показал взаимность открытого им электромагнитного явления. Он подвешивал к проволоке маленькую батарейку, замыкал цепь и регистрировал ее вращение при приближении к ней магнита. То же самое, независимо от Эрстеда, обнаружил и Ампер, которому обычно это открытие и приписывается. Еще проще продемонстрировал действие магнита на подвижный элемент тока Дэви, приблизив по совету Араго полюс магнита к электрической дуге. Стерджен видоизменил опыт Дэви и придал своему эксперименту тот вид, в каком и сегодня он демонстрируется на уроках физики, когда дуга непрерывно вращается в магнитном поле.

Но первым физиком, которому удалось получить вращение проводника с током в магнитном поле, был Фарадей. В 1821 г. он сконструировал очень простое приспособление: конец подвешенного проводника был опущен в резервуар с ртутью, в который снизу входил слегка выступающий над поверхностью ртути вертикальный магнит. При пропускании тока через ртуть и проводник последний начинал вращаться вокруг магнита. Опыт Фарадея, блестяще модифицированный Ампером, бесчисленными способами варьировался затем на протяжении всего XIX века. Здесь мы укажем лишь на описанное в 1823 г. «колесо Барлоу», потому что оно представляет собой разновидность электрического мотора, который вполне может служить еще и сегодня педагогам для учебных целей. Это металлическое колесо с горизонтальной осью, край которого погружен в ванночку с ртутью и находится между полюсами подковообразного железного магнита. Если от оси колеса, к его периферии и далее через ртуть течет ток, колесо вращается.

Правила Эрстеда об отклонении магнитной стрелки и соответствующее правило Ампера указывали на то, что отклонение возрастает, если тот же ток пропускать и над магнитной стрелкой и под ней. Это явление, предсказанное Лапласом и хорошо изученное Ампером, было использовано в 1820 г. Иоганном Швейггером (1779-1857) при конструировании мультипликатора, представлявшего собой прямоугольную рамку, обмотанную несколько раз проводом, по которому протекал ток. В середине рамки помещалась магнитная стрелка. Почти одновременно Авогадро и Микелотти построили другой тип мультипликатора, несомненно, гораздо менее удачный, чем швейггеровский; описание его опубликовано в 1823 г. Однако в мультипликаторе Авогадро и Микелотти имелось одно новшество: магнитная стрелка, подвешенная на нити, вращалась над разграфленным сектором, а весь аппарат помещался под стеклянным колпаком.

Вначале казалось, что мультипликатор представляет собой предельно чувствительный гальванометр, но вскоре обнаружили, что его можно значительно улучшить. Уже в 1821 г. Ампер сконструировал «астатический аппарат», как он его назвал, подобный тому, который применял Вассалли Эанди, а еще раньше, в 1797 г., Джон Тремери. Прибор состоял из двух параллельных жестко связанных магнитных стрелок с полюсами, направленными в противоположные стороны. Вся система подвешивалась на острие, и можно было наблюдать, как она поворачивалась при пропускании электрического тока через параллельный проводник, расположенный очень близко к нижней стрелке. Таким способом Ампер доказал, что магнитная стрелка, когда она не подвержена магнитному влиянию Земли, располагается перпендикулярно току.

Леопольдо Нобили (1784-1835) пришла удачная мысль сочетать астатический аппарат Ампера с подвеской на нити, как у Авогадро и Микелотти; таким образом он пришел к своему известному астатическому гальванометру, первое описание которого он представил на заседании Моденской Академии наук 13 мая 1825 г. Чтобы дать представление о чувствительности этого инструмента, Нобили замечает, что, если соединить концы провода гальванометра железной проволокой, достаточно согреть один из стыков пальцами, чтобы стрелка отклонилась на 90°.

Гальванометр Нобили в течение нескольких десятилетий оставался самым чувствительным измерительным прибором в физических лабораториях, и мы уже видели, какую ценную помощью он оказал Меллони в его исследованиях. В 1828 г. Эрстед решил улучшить его, применив вспомогательный подковообразный магнит. Эта попытка успехом не увенчалась, но о ней все же следует упомянуть как о первом приборе с вспомогательным полем.

Эти измерительные приборы были значительно усовершенствованы лишь в 1837 г. Возможно, Пуйе и сам не знал точно теории действия своего инструмента, которая была дана в 1840 г. Вильгельмом Вебером (1804-1891). В 1837 г. А. С. Беккерель изобрел «электромагнитные весы», получившие распространение лишь во второй половине столетия. Затем появились другие типы: Гельмгольца (1849 г.), Гогэна (1853 г.), Кольрауша (1882 г.). Тем временем Поггендорф с 1826 г. ввел метод зеркального отсчета, развитый затем Гауссом (1832 г.) и примененный в зеркальном гальванометре Вебером в 1846 г.

С большим энтузиазмом был принят гальванометр, изобретенный в 1886 г. Д"Арсонвалем (1851-1940), в котором, как известно, измеряемый ток проходит через легкую подвижную катушку, помещенную в магнитном поле.

Магнитное действие тока

Марио Льоцци

ОПЫТ ЭРСТЕДА

Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались доказать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнитостатических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между "гальваническим флюидом" и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (17611835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (18031869), Пьетро Конфильякки (17771844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать, это обычное электростатическое действие.

Когда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной "Experimenta circa effectum conflictus electrici in acum magneticam" датский физик Ганс Христиан Эрстед (17771851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь, долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа. В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является "силой поворачивающей". Значение этого факта чувствовалось, уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника "электрической материи, соответственно положительной и отрицательной".

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию "магнитных кривых", или "силовых линий". Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, "облепливается железными опилками так, как если б это был магнить", из чего он сделал заключение, что "ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию".

Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон. Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении ток

Похожие публикации