Пособие для студентов

1. Виды уравнений прямой на плоскости

Название

Обозначение

Общее уравнение прямой на плоскости

Ах + Ву + С = 0 перпендикулярена вектору = (А, В)

Уравнение прямой в отрезках

Где а координата точки пересечения прямой с осью Ох, а b – координата точки пересечения прямой с осью Оу.

Нормальное уравнение прямой

xcos j + ysin j - p = 0, р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Уравнение прямой с угловым коэффициентом

2. Основные задачи на прямую в пространстве

Задача

Ее реализация

Уравнение прямой, проходящей через две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2),

Угол между прямыми на плоскости

Условие перпендикулярности и параллельности прямых

Две прямые параллельны, если k 1 = k 2 .

Две прямые перпендикулярны, если

Расстояние от точки М(х 0 , у 0) до прямой

Ах + Ву + С =0

3. Виды уравнений плоскости в пространстве

Название

Обозначение

Общее уравнение плоскости

Ax + By + Cz + D = 0, где А, В, С – координаты вектора -вектор нормали к плоскости.

Уравнение плоскости, проходящей через данную точку М 0 (х 0 , у 0 , z 0), перпендикулярно данному вектору(A , B , C )

A (x – x 0) + B (y – y 0) + C (z – z 0) = 0.

Уравнение плоскости в отрезках

Числа a , b , c являются точками пересечения плоскости соответственно с осями х, у, z .

4. Основные задачи на плоскость в пространстве

Задача

Ее реализация

Уравнение плоскости, проходящей через три точки

Расстояние от точки М 0 (х 0 , у 0 , z 0) до плоскости Ах+Ву+Сz +D =0

Угол между плоскостями

Условия параллельности и перпендикулярности плоскостей

Плоскости перпендикулярны если: .

Плоскости, параллельны , если .

5. Виды уравнений прямой в пространстве

Название

Обозначение

Параметрические уравнения прямой

Канонические уравнения прямой

, где (m , n , p ) –направляющий вектор прямой, а М 0 (x 0 , y 0 , z 0)- точка через которую прямая проходит.

Общие уравнения прямой в пространстве

, где направляющий вектор

6. Основные задачи на прямую в пространстве

Задача

Ее реализация

Уравнение прямой в пространстве,

проходящей через две точки M 1 (x 1 , y 1 , z 1 ) и M 2 (x 2 , y 2 , z 2 )

Угол между прямыми в пространстве

Условия параллельности и перпендикулярности прямых в пространстве

прямые параллельны, если

прямые перпендикулярны если .

7. Основные задачи на плоскость и прямую в пространстве

8. Кривые второго порядка

Название

Формула

Геометрическая интерпретация

Эллипс

Окружность

Гипербола

Парабола

у 2 = 2рх

9. Поверхности второго порядка

Название

Формула

Геометрическая интерпретация

сфера

эллиптический цилиндр

гиперболический цилиндр

параболический цилиндр

конус

или

эллипсоид

однополосный гиперболоид

двуполостный гиперболоид

эллиптический параболоид

гиперболический параболоид

В данном модуле студент должен изучить теоретический материал по предложенным учебным элементам. (см. Теоретический материал по высшей математике: учебно-методический материал для студента. Часть I. Сост.: Калукова О.М., Кошелева Н.Н., Никитина М.Г., Павлова Е.С., Емельянова С.Г. - Тольятти: ТГУ, 2005 и доп. литературу)

В таблице 7 представлен график изучения теоретического материала по модулю «Аналитическая геометрия»

Таблица 7

обучения

теоретический материал

аудиторные занятия

самостоятельная работа

"Понятие об уравнении линии на плоскости"

"Плоскость и прямая в пространстве"

Теоретический материал по теме "Элементы теории множеств"

" Кривые второго порядка"

Теоретический материал по теме"Элементы теории графов"

"Поверхности второго порядка"

Теоретический материал по теме "Собственные значения матрицы"

По всем вопросам обращаться к академическому консультанту, задавая вопросы на форуме образовательного портала.

Также студент должен ознакомиться с типовыми задачами и упражнения по модулю, чтобы выполнить свой вариант ИДЗ (см. Руководство к решению задач: учебно-методическое пособие для студентов Часть I. Сост.: Никитина М.Г., Павлова Е.С., - Тольятти: ТГУ, 2008.)

В таблице 8 представлен график изучения практических вопросов по модулю «Аналитическая геометрия»

Таблица 8

обучения

Практические занятия

аудиторные занятия

самостоятельная работа

Решение задач по теме "Прямая на плоскости"

Решение задач по теме "Плоскость и прямая в пространстве"

Решение задач по теме "Элементы теории множеств"

Решение задач по теме "Кривые второго порядка"

Решение задач по теме "Элементы теории графов"

Решение задач по теме "Поверхности второго порядка"

Решение задач по теме "Собственные значения матрицы"

По всем вопросам обращаться к академическому консультанту, задавая вопросы на форуме образовательного портала или в часы индивидуальных консультаций (график индивидуальных консультаций представлен на образовательном портале).

Студент должен выполнить свой вариант домашнего задания (см. Индивидуальные домашние задания для студентов, обучающихся по технологии 30/70. Часть I. Сост.: Калукова О.М., Кошелева Н.Н., Никитина М.Г., Павлова Е.С., Емельянова С.Г., - Тольятти: ТГУ, 2005).

График выполнения представлен ИДЗ в таблице 9.

Таблица 9

Неделя обучения

с 1 по 4 задание

с 5 по 7 задание

с 8 по 11 задание

12,13 задание

По окончании 12 недели сдать ИДЗ академическому консультанту и получить на образовательном портале допуск к тестированию

На тринадцатой неделе обучения студенты проходят тестирование по модулю, которое выставлено в расписание.

В этом уроке мы рассмотрим, как с помощью определителя составить уравнение плоскости . Если вы не знаете, что такое определитель, зайдите в первую часть урока - «Матрицы и определители ». Иначе вы рискуете ничего не понять в сегодняшнем материале.

Уравнение плоскости по трем точкам

Зачем вообще нужно уравнение плоскости? Все просто: зная его, мы легко высчитаем углы, расстояния и прочую хрень в задаче C2. В общем, без этого уравнения не обойтись. Поэтому сформулируем задачу:

Задача. В пространстве даны три точки, не лежащие на одной прямой. Их координаты:

M = (x 1 , y 1 , z 1);
N = (x 2 , y 2 , z 2);
K = (x 3 , y 3 , z 3);

Требуется составить уравнение плоскости, проходящей через эти три точки. Причем уравнение должно иметь вид:

Ax + By + Cz + D = 0

где числа A , B , C и D - коэффициенты, которые, собственно, и требуется найти.

Ну и как получить уравнение плоскости, если известны только координаты точек? Самый простой способ - подставить координаты в уравнение Ax + By + Cz + D = 0. Получится система из трех уравнений, которая легко решается.

Многие ученики считают такое решение крайне утомительным и ненадежным. Прошлогодний ЕГЭ по математике показал, что вероятность допустить вычислительную ошибку действительно велика.

Поэтому наиболее продвинутые учителя стали искать более простые и изящные решения. И ведь нашли! Правда, полученный прием скорее относится к высшей математике. Лично мне пришлось перерыть весь Федеральный перечень учебников, чтобы убедиться, что мы вправе применять этот прием без каких-либо обоснований и доказательств.

Уравнение плоскости через определитель

Хватит лирики, приступаем к делу. Для начала - теорема о том, как связаны определитель матрицы и уравнение плоскости.

Теорема. Пусть даны координаты трех точек, через которые надо провести плоскость: M = (x 1 , y 1 , z 1); N = (x 2 , y 2 , z 2); K = (x 3 , y 3 , z 3). Тогда уравнение этой плоскости можно записать через определитель:

Для примера попробуем найти пару плоскостей, которые реально встречаются в задачах С2. Взгляните, как быстро все считается:

A 1 = (0, 0, 1);
B = (1, 0, 0);
C 1 = (1, 1, 1);

Составляем определитель и приравниваем его к нулю:


Раскрываем определитель:

a = 1 · 1 · (z − 1) + 0 · 0 · x + (−1) · 1 · y = z − 1 − y;
b = (−1) · 1 · x + 0 · 1 · (z − 1) + 1 · 0 · y = −x;
d = a − b = z − 1 − y − (−x ) = z − 1 − y + x = x − y + z − 1;
d = 0 ⇒ x − y + z − 1 = 0;

Как видите, при расчете числа d я немного «причесал» уравнение, чтобы переменные x , y и z шли в правильной последовательности. Вот и все! Уравнение плоскости готово!

Задача. Составьте уравнение плоскости, проходящей через точки:

A = (0, 0, 0);
B 1 = (1, 0, 1);
D 1 = (0, 1, 1);

Сразу подставляем координаты точек в определитель:

Снова раскрываем определитель:

a = 1 · 1 · z + 0 · 1 · x + 1 · 0 · y = z;
b = 1 · 1 · x + 0 · 0 · z + 1 · 1 · y = x + y;
d = a − b = z − (x + y ) = z − x − y;
d = 0 ⇒ z − x − y = 0 ⇒ x + y − z = 0;

Итак, уравнение плоскости снова получено! Опять же, на последнем шаге пришлось поменять в нем знаки, чтобы получить более «красивую» формулу. Делать это в настоящем решении совсем не обязательно, но все-таки рекомендуется - чтобы упростить дальнейшее решение задачи.

Как видите, составлять уравнение плоскости теперь намного проще. Подставляем точки в матрицу, считаем определитель - и все, уравнение готово.

На этом можно было бы закончить урок. Однако многие ученики постоянно забывают, что стоит внутри определителя. Например, в какой строчке стоит x 2 или x 3 , а в какой - просто x . Чтобы окончательно разобраться с этим, давайте проследим, откуда берется каждое число.

Откуда берется формула с определителем?

Итак, разбираемся, откуда возникает такое суровое уравнение с определителем. Это поможет вам запомнить его и успешно применять.

Все плоскости, которые встречаются в задаче C2, задаются тремя точками. Эти точки всегда отмечены на чертеже, либо даже указаны прямо в тексте задачи. В любом случае, для составления уравнения нам потребуется выписать их координаты:

M = (x 1 , y 1 , z 1);
N = (x 2 , y 2 , z 2);
K = (x 3 , y 3 , z 3).

Рассмотрим еще одну точку на нашей плоскости с произвольными координатами:

T = (x , y , z )

Берем любую точку из первой тройки (например, точку M ) и проведем из нее векторы в каждую из трех оставшихся точек. Получим три вектора:

MN = (x 2 − x 1 , y 2 − y 1 , z 2 − z 1);
MK = (x 3 − x 1 , y 3 − y 1 , z 3 − z 1);
MT = (x − x 1 , y − y 1 , z − z 1).

Теперь составим из этих векторов квадратную матрицу и приравняем ее определитель к нулю. Координаты векторов станут строчками матрицы - и мы получим тот самый определитель, который указан в теореме:

Эта формула означает, что объем параллелепипеда, построенного на векторах MN , MK и MT , равен нулю. Следовательно, все три вектора лежат в одной плоскости. В частности, и произвольная точка T = (x , y , z ) - как раз то, что мы искали.

Замена точек и строк определителя

У определителей есть несколько замечательных свойств, которые еще более упрощают решение задачи C2 . Например, нам неважно, из какой точки проводить векторы. Поэтому следующие определители дают такое же уравнение плоскости, как и приведенный выше:

Также можно менять местами строчки определителя. Уравнение при этом останется неизменным. Например, многие любят записывать строчку с координатами точки T = (x ; y ; z ) в самом верху. Пожалуйста, если вам так удобно:

Некоторых смущает, что в одной из строчек присутствуют переменные x , y и z , которые не исчезают при подстановке точек. Но они и не должны исчезать! Подставив числа в определитель, вы должны получить вот такую конструкцию:

Затем определитель раскрывается по схеме, приведенной в начале урока, и получается стандартное уравнение плоскости:

Ax + By + Cz + D = 0

Взгляните на пример. Он последний в сегодняшнем уроке. Я специально поменяю строчки местами, чтобы убедиться, что в ответе получится одно и то же уравнение плоскости.

Задача. Составьте уравнение плоскости, проходящей через точки:

B 1 = (1, 0, 1);
C = (1, 1, 0);
D 1 = (0, 1, 1).

Итак, рассматриваем 4 точки:

B 1 = (1, 0, 1);
C = (1, 1, 0);
D 1 = (0, 1, 1);
T = (x , y , z ).

Для начала составим стандартный определитель и приравниваем его к нулю:

Раскрываем определитель:

a = 0 · 1 · (z − 1) + 1 · 0 · (x − 1) + (−1) · (−1) · y = 0 + 0 + y;
b = (−1) · 1 · (x − 1) + 1 · (−1) · (z − 1) + 0 · 0 · y = 1 − x + 1 − z = 2 − x − z;
d = a − b = y − (2 − x − z ) = y − 2 + x + z = x + y + z − 2;
d = 0 ⇒ x + y + z − 2 = 0;

Все, мы получили ответ: x + y + z − 2 = 0 .

Теперь давайте переставим пару строк в определителе и посмотрим, что произойдет. Например, запишем строчку с переменными x , y , z не внизу, а вверху:

Вновь раскрываем полученный определитель:

a = (x − 1) · 1 · (−1) + (z − 1) · (−1) · 1 + y · 0 · 0 = 1 − x + 1 − z = 2 − x − z;
b = (z − 1) · 1 · 0 + y · (−1) · (−1) + (x − 1) · 1 · 0 = y;
d = a − b = 2 − x − z − y;
d = 0 ⇒ 2 − x − y − z = 0 ⇒ x + y + z − 2 = 0;

Мы получили точно такое же уравнение плоскости: x + y + z − 2 = 0. Значит, оно действительно не зависит от порядка строк. Осталось записать ответ.

Итак, мы убедились, что уравнение плоскости не зависит от последовательности строк. Можно провести аналогичные вычисления и доказать, что уравнение плоскости не зависит и от точки, координаты которой мы вычитаем из остальных точек.

В рассмотренной выше задаче мы использовали точку B 1 = (1, 0, 1), но вполне можно было взять C = (1, 1, 0) или D 1 = (0, 1, 1). В общем, любую точку с известными координатами, лежащую на искомой плоскости.

12.1. Основные понятия

Поверхность и ее уравнение

Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке О 1 есть геометрическое место всех точек пространства, находящихся от точки O 1 на расстоянии R.

Прямоугольная система координат Oxyz в пространстве позволяет установить взаимно однозначное соответствие между точками простран­ства и тройками чисел х, у и z - их координатами. Свойство, общее всем точкам поверхности, можно записать в виде уравнения, связывающего ко­ординаты всех точек поверхности.

Уравнением данной поверхности в прямоугольной системе координат Oxyz называется такое уравнение F(x, у, z) = 0 с тремя переменны­ми х, у и z, которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек, не лежащих на этой поверхности. Переменные х, у и z в уравнении поверхности называ­ются текущими координатами точек поверхности.

Уравнение поверхности позволяет изучение геометрических свойств поверхности заменить исследованием его уравнения. Так, для того, чтобы узнать, лежит ли точка M 1 (x 1 ;y 1 ;z 1) на данной поверхности, достаточно подстави ть координаты точки M 1 в уравнение поверхности вместо пере­менных: если эти координаты удовлетворяют уравнению, то точка лежит на поверхности, если не удовлетворяют - не лежит.

Уравнение сферы

Найдем уравнение сферы радиуса R с центром в точке O 1 (x 0 ;y 0 ;z 0). Согласно определению сферы расстояние любой ее точки М(х; у; z) от центра O 1 (x 0 ;y 0 ;z 0) равно радиусу R, т. е. O 1 M= R. Но , где . Следовательно,

Это и есть искомое уравнение сферы. Ему удовлетворяют координаты лю­бой ее точки и не удовлетворяют координаты точек, не лежащих на данной сфере.

Если центр сферы Ο 1 совпадает с началом координат, то уравнение сферы принимает вид .

Если же дано уравнение вида F(x;y;z) = 0 , то оно, вообще говоря, определяет в пространстве некоторую поверхность.

Выражение «вообще говоря» означает, что в отдельных случаях уравнение F(x; y; z)=0 может определять не поверхность, а точку, линию или вовсе не определять никакой геометрический образ. Говорят, «поверхность вырождается».

Так, уравнению не удовлетворяют никакие дей­ствительные значения х, у, z. Уравнению удовлетворяют лишь координаты точек, лежащих на оси Ох (из уравнения следует: у = 0, z = 0, а х - любое число).

Итак, поверхность в пространстве можно задать геометрически и ана­литически. Отсюда вытекает постановка двух основных задач:

1. Дана поверхность как геометрическое место точек. Найти уравнение этой поверхности.

2. Дано уравнение F(x;y;z) = 0. Исследовать форму поверхности, определяемой этим уравнением.

Уравнения линии в пространстве

Линию в пространстве можно рассматривать как линию пересечения двух поверхностей (см. рис. 66) или как геометрическое место точек, об­щих двум поверхностям.

Если и - уравнения двух поверхностей, определяющих линию L, то координаты точек этой линии удовлетворяют системе двух уравнений с тремя неизвестными:

(12.1)

Сравнения системы (12.1) называются уравнениями линии в пространстве. Например, есть уравнения оси Ох.

Линию в пространстве можно рассматривать как траекторию движения точки (см. рис. 67). В этом случае ее задают векторным уравнением

или параметрическими уравнениями

проекций вектора (12.2) на оси координат.

Например, параметрические уравнения винтовой линии имеют вид

Если точка Μ равномерно движется по образующей кругового цилиндра, а сам цилиндр равномерно вращается вокруг оси, то точка Μ описывает винтовую линию (см. рис. 68).

12.2. Уравнения плоскости в пространстве

Простейшей поверхностью является плоскость. Плоскость в пространстве Oxyz можно задать разными способами. Каждому из них соответствует определенный вид ее уравнения.

Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору

Пусть в пространстве Oxyz плоскость Q задана точкой и вектором , перпендикулярным этой плоскости (см. рис. 69). Выведем уравнение плоскости Q. Возьмем на ней произвольную точку и составим вектор . При любом расположении точки Μ на плоскости Q векторы и взаимно перпендикулярны, поэтому их скалярное произведение равно нулю: , т. е.

(12.3)

Координаты любой точки плоскости Q удовлетворяют уравнению (12.3), координаты точек, не лежащих на плоскости Q, этому уравнению не удовлетворяют (для них ).

Уравнение (12.3) называется уравнением плоскости, проходящей через данную точку перпендикулярно вектору . Оно первой степени относительно текущих координат x, y, z. Вектор называется нормальным вектором плоскости.

Придавая коэффициентам А, В и С уравнения (12.3) различные значения, можно получить уравнение любой плоскости, проходящей череp точку . Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей, а уравнение (12.3) - уравнением связки плоскостей.

Общее уравнение плоскости

Рассмотрим общее уравнение первой степени с тремя переменными х, у и z:

Полагая, что по крайней мере один из коэффициентов А, В или С не равен нулю, например , перепишем уравнение (12.4) в виде

Сравнивая уравнение (12.5) с уравнением (12.3), видим, что уравнения (12.4) и (12.5) являются уравнением плоскости с нормальным вектором , проходящей через точку .

Итак, уравнение (12.4) определяет в системе координат Oxyz некоторую плоскость. Уравнение (12.4) называется общим уравнением плоскости.

Частные случаи общего уравнения плоскости:

1. Если D = 0, то оно принимает вид . Этому уравнению удовлетворяет точка . Следовательно, в этом случае плос­кость проходит через начало координат.

2. Если С = 0, то имеем уравнение . Нормальный вектор перпендикулярен оси Οz. Следовательно, плоскость параллельна оси Οz; если B = 0 - параллельна оси Оу, А = 0 - параллельна оси Ох.

3. Если С = D = 0, то плоскость проходит через параллельно оси Οz, т. е. плоскость проходит через ось Οz. Аналогично, уравнениям и отвечают плоскости, проходящие соответственно через оси Ох и Оу.

4. Если А = В = 0, то уравнение (12.4) принимает вид , т. е. Плоскость параллельна плоскости Оху. Аналогично, уравнениям и отвечают плоскости, соответственно параллельные плоскостям Oyz и Οxz.

5. Если A = B = D = 0, то уравнение (12.4) примет вид , т. е. z = 0. Это уравнение плоскости Оху. Аналогично: у = 0 - уравнение плоскости Οxz; x = О - уравнение плоскости Oyz.

Уравнение плоскости, проходящей через три данные точки

Три точки пространства, не лежащие на одной прямой, определяют единственную плоскость. Найдем уравнение плоскости Q, проходящей через три данные точки M 1 (x 1 ;y 1 ;z 1), М 2 (x 2 ;y 2 ;z 2) и М 3 (х 3 ,y 3 ,z 3), не лежащие на одной прямой.

Возьмем на плоскости произвольную точку M(x;y;z) и составим век­торы , , . Эти векторы лежат на плоскости Q, следовательно, они компланарны. Используем условие компланарнос­ти трех векторов (их смешанное произведение равно нулю), получаем , т. е.

(12.6)

Уравнение (12.6) есть уравнение плоскости, проходящей через три данные точки.

Уравнение плоскости в отрезках

Пусть плоскость отсекает на осях Ох, Оу и Оz соответственно отрезки a , b и c , т. е. проходит через три точки A(a;0;0) , B(0;b;0) и C(0;0;c) (см.рис. 70). Подставляя координаты этих точек в уравнение (12.6), получаем

Раскрыв определитель, имеем , т. е. или

(12.7)

Уравнение (12.7) называется уравнением плоскости в отрезках на осях. Им удобно пользоваться при построении плоскости.

Нормальное уравнение плоскости

Положение плоскости Q вполне определяется заданием единичного вектора , имеющего направление перпендикуляра ОК, опущенного на

плоскость из начала координат, и длиной p этого перпендикуляра (см. рис. 71).

Пусть ОК = p , а α, β, g - углы, образованные единичным вектором ё с осями Ох, Оу и Οz. Тогда . Возьмем на плоскости произвольную точку М(х; у; z) и соединим ее с началом координат. Образуем вектор . При любом положении точки Μ на плоскости Q проекция радиус-вектора на направление вектора всегда равно р: , т. е. или

(12.8)

Уравнение (12.8) называется нормальным уравнением плоскости в векторной форме. Зная координаты векторов f и e , уравнение (12.8) перепишем в виде

Уравнение (12.9) называется нормальным уравнением плоскости в координатной форме.

Отметим, что общее уравнение плоскости (12.4) можно привести к нормальному уравнению (12.9) так, как это делалось для уравнения прямой на плоскости. А именно: умножить обе части уравнения (12.4) на норми­рующий множитель , где знак берется противоположным знаку свободного члена D общего уравнения плоскости.

В предыдущем разделе, посвященном плоскости в пространстве, мы рассмотрели вопрос с позиции геометрии. Теперь же перейдем к описанию плоскости с помощью уравнений. Взгляд на плоскость со стороны алгебры предполагает рассмотрение основных видов уравнения плоскости в прямоугольной системе координат O х у z трехмерного пространства.

Yandex.RTB R-A-339285-1

Определение уравнения плоскости

Определение 1

Плоскость – это геометрическая фигура, состоящая из отдельных точек. Каждой точке в трехмерном пространстве соответствуют координаты, которые задаются тремя числами. Уравнение плоскости устанавливает зависимость между координатами всех точек.

Уравнение плоскости в прямоугольной системе координат 0хуz имеет вид уравнения с тремя переменными х, у и z . Удовлетворяют уравнению координаты любой точки, лежащей в пределах заданной плоскости, не удовлетворяют координаты любых других точек, которые лежат вне заданной плоскости.

Подстановка в уравнение плоскости координат точки данной плоскости, обращает уравнение в тождество. При подстановке координат точки, лежащей вне плоскости, уравнение превращается в неверное равенство.

Уравнение плоскости может иметь несколько видов. В зависимости от специфики решаемых задач уравнение плоскости может быть записано по-разному.

Общее уравнение плоскости

Сформулируем теорему, а затем запишем уравнение плоскости.

Теорема 1

Всякая плоскость в прямоугольной системе координат O x y z в трехмерном пространстве может быть задана уравнением вида A x + B y + C z + D = 0 , где А, В, С и D – некоторые действительные числа, которые одновременно не равны нулю. Всякое уравнение, имеющее вид A x + B y + C z + D = 0 , определяет плоскость в трехмерном пространстве

Уравнение, имеющее вид A x + B y + C z + D = 0 носит название общего уравнения плоскости. Если не придавать числам А, В, С и D конкретных значений, то мы получаем уравнение плоскости в общем виде.

Важно понимать, что уравнение λ · A x + λ · B y + λ · C z + λ · D = 0 , будет точно так же определять плоскость. В уравнении λ - это некоторое отличное от нуля действительное число. Это значит, что равенства A x + B y + C z + D = 0 и λ · A x + λ · B y + λ · C z + λ · D = 0 равнозначны.

Пример 1

Общим уравнениям плоскости x - 2 · y + 3 · z - 7 = 0 и - 2 · x + 4 · y - 2 3 · z + 14 = 0 удовлетворяют координаты одних и тех же точек, расположенных в трехмерном пространстве. Это значит, что они задают одну и ту же плоскость.

Дадим пояснения к рассмотренной выше теореме. Плоскость и ее уравнение неразделимы, так как каждому уравнению A x + B y + C z + D = 0 соответствует плоскость в заданной прямоугольной системе координат, а каждой плоскости, расположенной в трехмерном пространстве, соответствует ее уравнение вида A x + B y + C z + D = 0 .

Уравнение плоскости A x + B y + C z + D = 0 может быть полным и неполным. Все коэффициенты А, B , С и D в полном уравнении отличны от нуля. В противном случае, общее уравнение плоскости считается неполным.

Плоскости, которые задаются неполными уравнениями, могут быть параллельны координатным осям, проходить через оси координат, совпадать с координатными плоскостями или располагаться параллельно им, проходить через начало координат.

Пример 2

Рассмотрим положение в пространстве плоскости, заданной уравнением 4 · y - 5 · z + 1 = 0 .

Она параллельна оси абсцисс и располагается перпендикулярно по отношению к плоскости O y z . Уравнение z = 0 определяет координатную плоскость O y z , а общее уравнение плоскости вида 3 · x - y + 2 · z = 0 соответствует плоскости, которая проходит через начало координат.

Важное уточнение: коэффициенты А, В и С в общем уравнении плоскости представляют собой координаты нормального вектора плоскости.

Когда говорят об уравнении плоскости, то подразумевают общее уравнение плоскости. Все виды уравнений плоскости, которые мы разберем в следующем разделе статьи, получают из общего уравнения плоскости.

Нормальное уравнение плоскости

Нормальное уравнение плоскости – это общее уравнение плоскости вида A x + B y + C z + D = 0 , которое удовлетворяет следующим условиям: длина вектора n → = (A , B , C) равна единице, т.е. n → = A 2 + B 2 + C 2 = 1 , а D ≤ 0 .

Также запись нормального уравнения плоскости может иметь следующий вид cos α · x + cos β · y + cos γ · z - p = 0 , где p – это неотрицательное число, которое равно расстоянию от начала координат до плоскости, а cos α , cos β , cos γ - это направляющие косинусы нормального вектора данной плоскости единичной длины.

n → = (cos α , cos β , cos γ) , n → = cos 2 α + cos 2 β + cos 2 γ = 1

То есть, согласно нормальному уравнению плоскости, плоскость в прямоугольной системе координат O х у z удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости n → = (cos α , cos β , cos γ) . Если p равно нулю, то плоскость проходит через начало координат.

Пример 3

Плоскость задана общим уравнением плоскости вида - 1 4 · x - 3 4 · y + 6 4 · z - 7 = 0 . D = - 7 ≤ 0 , нормальный вектор этой плоскости n → = - 1 4 , - 3 4 , 6 4 имеет длину, равную единице, так как n → = - 1 4 2 + - 3 4 2 + 6 4 = 1 . Соответственно, это общее уравнение плоскости является нормальным уравнением плоскости.

Для более детального изучения нормального уравнения плоскости мы рекомендуем перейти в соответствующий раздел. В теме приведены разборы задач и характерные примеры, а также способы приведения общего уравнения плоскости к нормальному виду.

Плоскость отсекает на координатных осях O х, O у и O z отрезки определенной длины. Длины отрезков задаются отличными от нуля действительными числами a , b и с. Уравнение плоскости в отрезках имеет вид x a + y b + z c = 1 . Знак чисел а, b и с показывает, в каком направлении от нулевого значения следует откладывать отрезки на координатных осях.

Пример 4

Построим в прямоугольной системе координат плоскость, которая задана уравнением формулы плоскости в отрезках x - 5 + y - 4 + z 4 = 1 .

Точки удалены от начала координат в отрицательном направлении на 5 единиц по оси абсцисс, на 4 единицы в отрицательном направлении по оси ординат и на 4 единицы в положительном направлении по оси аппликат. Отмечаем точки и соединяем их прямыми линиями.

Плоскость полученного треугольника является плоскостью, соответствующей уравнению плоскости в отрезках, имеющего вид x - 5 + y - 4 + z 4 = 1 .

Более подробно информация об уравнении плоскости в отрезках, приведении уравнения плоскости в отрезках к общему уравнению плоскости размещена в отдельной статье. Там же приведен ряд решений задач и примеров по теме.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение плоскости, виды уравнения плоскости.

В разделе плоскость в пространстве мы рассмотрели плоскость с позиций геометрии. В этой статье мы взглянем на плоскость с позиций алгебры, то есть, перейдем к описанию плоскости с помощью уравнения плоскости.

Сначала разберемся с вопросом: «Что такое уравнение плоскости»? После этого рассмотрим основные виды уравнения плоскости в прямоугольной системе координат Oxyz трехмерного плостранства.

Навигация по странице.

  • Уравнение плоскости – определение.
  • Общее уравнение плоскости.
  • Уравнение плоскости в отрезках.
  • Нормальное уравнение плоскости.

Уравнение плоскости – определение.

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz и задана плоскость.

Плоскость, как и любая другая геометрическая фигура, состоит из точек. В прямоугольной системе координат Oxyz каждой точке соответствует упорядоченная тройка чисел – координаты точки. Между координатами каждой точки плоскости можно установить зависимость с помощью уравнения, которое называют уравнением плоскости.

Уравнение плоскости в прямоугольной системе координат Oxyz в трехмерном пространстве – это уравнение с тремя переменными x , y и z , которому удовлетворяют координаты любой точки заданной плоскости и не удовлетворяют координаты точек, лежащих вне данной плоскости.

Таким образом, уравнение плоскости обращается в тождество при подстановке в него координат любой точки плоскости. Если в уравнение плоскости подставить координаты точки, не лежащей в этой плоскости, то оно обратится в неверное равенство.

Осталось выяснить, какой вид имеет уравнение плоскости. Ответ на этот вопрос содержится в следующем пункте этой статьи. Забегая вперед, отметим, что уравнение плоскости может быть записано по-разному. Существование различных видов уравнения плоскости обусловлено спецификой решаемых задач.

К началу страницы

Общее уравнение плоскости.

Приведем формулировку теоремы, которая дает нам вид уравнения плоскости.

Теорема.

Всякое уравнение вида , где A , B , C и D – некоторые действительные числа, причем А , В и C одновременно не равны нулю, определяет плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве, и всякая плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве может быть задана уравнением вида .

Уравнение называется общим уравнением плоскости в пространстве. Если не придавать числам А , В , С и D конкретных значений, то общее уравнение плоскости называют уравнением плоскости в общем виде .

Следует заметить, что уравнение вида , где - некоторое действительное число, отличное от нуля, будет определять ту же самую плоскость, так как равенства и эквивалентны. К примеру, общие уравнения плоскости и задают одну и ту же плоскость, так как им удовлетворяют координаты одних и тех же точек трехмерного пространства.


Немного поясним смысл озвученной теоремы. В прямоугольной системе координат Oxyz каждой плоскости соответствует ее уравнение общего вида , а каждому уравнению соответствует плоскость в заданной прямоугольной системе координат трехмерного пространства. Другими словами, плоскость и ее общее уравнение неразделимы.

Если все коэффициенты А , В , С и D в общем уравнении плоскости отличны от нуля, то оно называется полным . В противном случае, общее уравнение плоскости называется неполным .

Неполными уравнениями задаются плоскости, параллельные координатным осям, проходящие через координатные оси, параллельные координатным плоскостям, перпендикулярные координатным плоскостям, совпадающие с координатными плоскостями, а также плоскости, проходящие через начало координат.

Например, плоскость параллельна оси абсцисс и перпендикулярна координатной плоскости Oyz , уравнение z = 0 определяет координатную плоскость Oxy , а общее уравнение плоскости вида соответствует плоскости, проходящей через начало координат.

Отметим также, что коэффициенты A , B и C в общем уравнении плоскости представляют собойкоординаты нормального вектора плоскости.

Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

К началу страницы

Похожие публикации