Гравитация как физическое явление. Космонавтика требует новой механики и нового понимания гравитации

Гравитация является одним из самых загадочных физических явлений. Ни о каком ином явлении не высказано, не написано, не защищено диссертаций, не присвоено академических званий и Нобелевских премий, как по гравитации.

Любые представления исторически обусловлены. Время меняет задачи, стоящие перед обществом, а это заставляет, как правило, менять и представления о тех или иных явлениях. Не является исключением и явление гравитации. Не могут не отличаться представление о гравитации у строителей египетских пирамид и у путешественников по космическому пространству.

2.Ньютоновское понимание гравитации

В ньютоновской гравитационной теории гравитация фактически полностью ассоциирована с силой тяжести или силой веса. Сущность гравитации по Ньютону в том, что к телу приложена сила - сила тяжести (в условиях Земли она обычно называется силой веса). Источник этой силы - другое или другие тела. Никакого гравитационного поля, фактически, нет. Гравитация есть прямое взаимодействие между телами. Это взаимодействие определяется Законом Всемирного Тяготения Ньютона. Никакого особого гравитационного пространства не существует. Гравитационное поле носит условный характер и служит лишь для удобства расчетов, никакой физики за этим понятием нет.

В земных условиях, например, при расчете статических конструкционных нагрузок, это удобное и наглядное представление.

3.Гравитационные явления в современном мире

Современный мир далеко вышел за рамки круга явлений, в которых сформировались ньютоновские гравитационные представления. Уже в начале прошлого века Альберт Эйнштейн обратил внимание на то, что даже явление в обычном лифте плохо согласуются с представлениями Ньютона. Это, а также релятивистский пунктик привели его к новому пониманию гравитации, отраженному в так называемой Общей теории относительности.

Сейчас общепринято, что ОТО есть гравитационная теория космологических масштабов и релятивистских движений. Но в масштабах макро- и мезомира, т.е. в области земной, планетарной (небесной) механики и космонавтики, ОТО не имеет смысла использовать и ничего нового эта теория дать не может. А если и дает, то только поправки в каких-то уж очень высоких приближениях. Поэтому мы остановимся на более детальном рассмотрении ньютоновских гравитационных представлений.

Одно из главных явлений, которое оказалось в центре рассмотрения механики в последние десятилетия, стало явление невесомости. Конечно, явление невесомости встречалось и ранее. Но было оно кратковременным и не осознавалось как некое особое механическое явление. Падает камень с Пизанской башни, ну и падает. Какая тут невесомость. Но развитие космонавтики вывело явление невесомости на первый план, была осознана его высокая значимость. Невесомость постепенно входит в разряд производственных и технологических факторов.

Но обращаясь к ньютоновским механическим представлениям, мы вдруг обнаруживаем, что этого понятия в механике Ньютона, фактически, не существует. По ньютоновским представлениям сила тяжести связана с гравитацией. Но вдруг оказалось, что это совсем не так. Покажем это.

Представим себе парашютиста на самолете перед броском в небо. Он стоит перед дверным проемом и находится в гравитационном поле, на него действует сила веса. Так считается по Ньютону. Но вот он делает шаг за дверь.Ясно, что гравитационное поле при этом не изменилось. И сила веса также не могла измениться. Но парашютист перешел в невесомое состояние, и потерял свой вес, неожиданно исчезла сила тяжести. Но ведь гравитационное поле не исчезло, оно каким было, таким и осталось. Поэтому очевидно, что и вес внутри самолета не был связан с гравитацией.

Иногда говорят, что сила веса вовсе не исчезла, а появилась (фиктивная) сила инерции, которая и уравновесила силу тяжести, так как парашютист стал двигаться ускоренно. Именно поэтому сам парашютист никакой силы веса не ощущает.

Правильно, в системе отсчета, к примеру, судейской коллегии, размещенной на земле, парашютист движется ускоренно. Но представим, что вместе с парашютистом выпрыгивает и фоторепортер, который снимает полет и действия парашютиста. И по отношению к этому фотографу парашютист может двигаться вверх, вниз, может стоять на месте. И где же тогда пресловутая сила инерции, связанная с ускоренным движением парашютиста? Как можно реальную силу, каковой, якобы, является сила тяжести, уравновесить фиктивной силой инерции, связанной с ускорением, если ускорение может иметь самый различный характер в зависимости от наблюдателя или вообще отсутствовать? Если принять, что земная судейская система отсчета более «правильная», чем система отсчета фотокорреспондента, то нужно доказать, что судейские фотоаппараты, судейские часы или дальномеры лучше, чем таковые же фотокорреспондента.

Так как это невозможно доказать, то приходится признать, что силы инерции есть фикция, а, следовательно, фикцией являются и силы тяжести, силы веса и вообще, все гравитационные силы, их просто не существует.. И парашютист в свободном падении движется именно свободно , т.е. без воздействия на него каких-либо сил (влиянием атмосферы пренебрегаем).

Тогда что же произошло с парашютистом, когда он делал свой шаг за борт самолета? А он вовсе не нагрузил себя таинственной фиктивной силой инерции, уравновесившей силу тяжести. Нет, он, наоборот, избавился от единственной реальной силы, действовавшей на него. Эта сила исходила от опоры, от пола самолета. И когда он освободился от нее, сделав шаг за пределы самолета, он и стал невесомым, стал свободным , на него перестали действовать какие-либо силы.

Таким образом, нет никаких гравитационных сил. Есть силы, действующие на человека, на камень на земле, на космонавта во время активного участка полета со стороны опоры. Если удалить опору, человек или камень станут свободными, невесомыми. Но силы, которая действует со стороны опоры на человека или камень никакие не гравитационные. Это обычные силы упругости, имеющие электрическую или, более обще, электромагнитную природу. А тело человека (подошвы) или камень, в свою очередь, обладают упругостью, и возникнет сила противодействия, направленная от подошв или камня к опоре. И эта сила тоже имеет электромагнитную природу. А где же гравитационные силы? Мы их не видим. Их нет.

Вот центральное, главное, фундаментальное утверждение, которое вытекает из космического опыта человечества: гравитационных сил нет . Запишем это самыми крупными буквами и станем на этом фундаменте создавать новую механику, механику космической эры.

4.Природа гравитации в свете опыта и представлений космонавтики

Но если нет гравитационных сил, нет силы тяжести, то значит нет и гравитации? Нет, это не так. Гравитация, конечно, существует..

Но природа ее совсем иная. Она вовсе не силовое взаимодействие между телами. Никакого силового взаимодействия между Солнцем и Землей, между Землейи Луной, между Землей и космическим кораблем, между Землей и камнем на ее поверхности нет.

Гравитация есть свойство . Свойство это состоит в изменении характера пространства вокруг гравитирующего тела. Всякое тело окружено некоторым ореолом, нимбом измененного пространства. Этот нимб тело носит при себе как нимб вокруг головы святого или атмосфера, ионосфера, магнитосфера вокруг Земли.И оторваться от тела в «самостоятельное плавание» этот ореол не может. Он привязан навечно к телу и перемещается вместе с ним.

Вот тут мы можем сразу же сопоставить свойство этого нимба со свойствами электромагнитного поля. Электромагнетизм имеет два заряда, положительный и отрицательный. Предположим, что мы имеем электронейтральный атом или молекулу. Тогда электрического поля, никакого электромагнитного нимба нет. Но вдруг из него вылетела положительно или отрицательно заряженная частица. Он стал ионом, электрически заряженным телом, и вокруг него должен появиться соответствующий нимб - электрическое поле. Его не было, а теперь должно стать. И вот тут и возникает вопрос: с какой скоростью это возникающее из не6ытия поле будет распространяться в пространстве. Понятно, что мгновенно поле во всем пространстве установиться не может. Оно будет распространяться вдаль от атома, переходя все дальше и дальше. Мы видим, что электромагнитное поле является близкодействующим, оно может в принципе отрываться от источников поля, у него имеется некоторая скорость распространения. И связано это исключительно с существованием двух видов электрических зарядов. Более точно с изменением дипольного момента, на который нет закона сохранения. Электромагнитное поле имеет связанную скорость распространения, связанную с движением источников поля, заряженных тел, например, при движении электрического заряда или магнита, и автономную скорость распространения, не связанную с движением материальных тел, являющейся универсальной константой - скоростью света.

В противорположеность электромагнетизму гравитации связана с источниками одного знака. Этот гравитационный источник, гравитационный заряд называется массой. Она всегда положительна и для нее существует закон сохранения... Более того, даже на массовый дипольный момент имеется закон сохранения - это, фактически, закон сохранения центра масс. Поэтому ниоткуда гравитационное поле возникнуть не может. Оно ввиду движения масс может как-то деформироваться, причем чем дальше находится точка наблюдения гравитационного поля от этих масс, тем больше требуется времени, чтобы эффект изменения поля был обнаружен. А на достаточном удалении от ограниченной системы масс она вообще может рассматриваться как единая нерасчлененная точечная масса, внутренние движения на достаточном удалении не могут изменить точечный характер этого поля. А на еще большем удалении гравитационное поле исчезает вообще, и никакими средствами мы его не сможем обнаружить. Пусть формально мы можем вычислить величину гравитационного поля Земли в другой галактике. Но очевидно, что это чисто теоретический артефакт. Отсюда прямо следует отсутствие пресловутых гравитационных волн , т.е. оторвавшихся от источников гравитационных полей. Гравитационных полей без источников не существует. Это в электромагнетизме испущенная электромагнитная волна теряет всякую связь с источником и есть «безисточниковое» электромагнитное поле. И в этом принципиальное отличие электромагнитного поля. Оно может действовать на любые расстояния. Так в наших оптических и радиотелескопах принимаются и воздействуют на приемникиэлектромагнитные поля, источник которых лежит в невообразимой дали, за миллионы и миллиарды световых лет. Электромагнитное поле - это поле с неограниченным радиусом действия в отличие от пространственно ограниченного гравитационного поля.

Заметим также, что существование гравитационных волн делает сомнительным принцип Галилея и самое существование инерциальных систем отсчета, а это уже ведет к катастрофическим последствиям для всей теоретической механики.

5.Гравитационные свойства пространства

Определим понятие свободного тела. Свободным телом мы будем называть тело, к которому не приложено никаких сил. Под силами, мы напоминаем и будем еще много раз напоминать, мы понимаем лишь воздействия электромагнитной природы. Ядерные и прочие микро- нано- фемто-силы вряд ли стоит рассматривать. А тела, на которые действуют силы (силы упругости, реактивные силы и иные силы электромагнитной природы) будем называть несвободными .

Определим понятие инерциальной системы отсчета. Инерциальной системой отсчета назовем такую систему отсчета, в которой свободные тела движутся равномерно и прямолинейно или покоятся. Иные системы отсчета будем называть неинерциальными . Отметим, что если у нас есть инерциальная система отсчета, то мы можем ввести и любое количество разнообразных неинерциальных систем отсчета, например, вращающиеся, колеблющиеся и т.д.

Определим теперь понятие галилеева пространства. Галилеевым будем называть пространство, в котором можно ввести инерциальную систему отсчета. Не во всяком пространстве можно ввести инерциальную систему отсчета. Если в пространстве нельзя ввести инерциальную систему отсчета, то такое пространство будем называть негалилеевым .

А теперь мы готовы сформулировать гравитационное свойство. Гравитационное свойство состоит в том, что в окрестности тела имеется область негалилеевости. В этой области невозможно ввести такую систему отсчета, чтобы в ней свободные тела двигались равномерно и прямолинейно или покоились.

Движения свободных тел будем называть естественными движениями . Там, где нет гравитации, там естественные движения могут иметь вид прямолинейный и равномерный. А гравитация приводит к тому, что естественные движения не могут иметь вид равномерный и прямолинейный. В гравитационном пространстве естественные движения гораздо более сложные. Это могут быть движения по окружностям, эллипсам, параболам,гиперболам и еще более сложным и замысловатымтраекториям. Сложнейшие траектории межпланетных космических аппаратов в свободном полете наглядно об этом свидетельствует. Почему это так - мы не знаем, гипотез не строим, а принимаем это как данную нам реальность..

Итак, теперь мы можем ответить на все поставленные выше вопросы в свете именно космического опыта.

1.Почему на орбитальном космическом корабле космонавт находится в состоянии невесомости? Ответ: не потому, что каким-то чудесным способом гравитационные силы уравновешиваются с мифическими инерционными. А по той простой причине, что он свободен, на него не действуют никакие силы .

2.Почему, если он свободен, он движется не прямолинейно, а по окружности? Ответ: потому что он находится в гравитационном поле, в области негалилеевости Земли, в которой движение свободных тел более сложное, в том числе может быть и круговое.

3.Почему Земля движется по кругу? Ответ: Земля является свободным телом. Никакие силы на нее не действуют. Но она находится в области негалилеевости (в гравитационном поле) Солнца. И свободное движение Земли является естественным движением - движением по кругу.

4.Какие силы действуют на камень на поверхности Земли? Одно из естественное движений камня в окрестности Земли, есть ускоренное падение в ее центр. Но поверхность Земли препятствует этому естественному движению путем приложения к камню силы, направленной вверх противоположно направлению естественного движения камня.. Сила эта не гравитационная, а обычная сила упругости, т.е. электромагнитной природы. Естественно, что по третьему закону Ньютона камень действует на свою опору с такой же силой, но уже вниз. Если вдруг опора исчезнет или потеряет твердость, то камень начнет естественное движение вниз, к центру Земли.

Отметим, что обычно силу, направленную от камня на опору - силу тяжести - считают активной силой, а силу от опоры к камню - силой реакции. В нашем представлении понятие активной силы и силы реакции поменялись местами. Активной стала сила от опоры к телу, силой реакции - сила от тела на опору. Это более отвечает механической логике. Активной является сила, которой можно управлять, а пассивной, силой реакции - это сила, возникающая ответно, автоматически. Силу опоры мы легко можем управлять. Опору можно убирать, ее можно делать более твердой, более мягкой и т.д. А сила от камня на опору при этом возникает автоматически. Например, когда камень лежит на ладони, то именно опорой мы можем манипулировать - держать камень, его подбрасывать и т.д. А действия камня на ладонь будут уже вторичными, ответными. Активную роль играет ладонь, а не камень.

6.Локальная галилеевость негалилеева пространства

У гравитационного поля есть уникальное свойство, резко отличающее его от электромагнитного. Самое удивительное, что это свойство теоретически до сих пор не освоено современной теоретической механикой, хотя практически оно используется, особенно в космонавтике, очень широко.

Если есть электромагнитное поле, то оно есть, и никакими преобразованиями систем отсчета его невозможно ликвидировать. Его компоненты, электрические или магнитные, могут преобразовываться друг в друга, но в области пространства, заполненного электромагнитным полем, оно есть в любой точке и в любой системе отсчета, у любого наблюдателя. У него есть инвариант.

Но совершенно иное мы имеем в гравитационном поле. Оказывается, гравитационное поле, т.е. область негалилеевости пространства, является одновременно локально галилеевым в каждой точке. Другими словами, можно исключить гравитационное поле в любой его точке и даже целой окрестности. Это следует из главного закона гравитации: в окрестности любого свободного тела имеется область галилеевости . Эта область может быть большой, глобальной, если свободное тело находится в галилеевом пространстве, или локальной, ограниченной, если само тело находится в негалилеевом, гравитационном пространстве.

Таким образом, мы приходим к важнейшему свойству гравитационного поля: гравитационное поле не абсолютно, а относительно. В любой точке гравитационного поля можно ввести такую систему отсчета, в окрестности которой его не существует.

До настоящего времени этот важнейший, центральный момент гравитации не был сформулирован в механической теории. А вот на практике он используется очень широко. Например, хотя Земля находится в области негалилеевости Солнца, но так как она свободное тело, то в ее ближайшей окрестности есть область галилеевости, в которой влиянием Солнца можно пренебречь. И если у Земли есть собственное гравитационное поле, то оно в этой окрестности накладывается не на поле Солнце, а на галилеево безгравитационное пространство, и мы можем рассчитывать в этой окрестности все движения так, как будто Земля находится сама по себе в галилеевом пространстве, и Солнца вообще не существует. Луна находится в области негалилеевости Солнца и Земли, но в окрестностях Луны мы можем учитывать только поле Луны, Космический корабль на орбите находится в области негалилеевости Солнца, Земли и Луны. Но при его свободном орбитальном движении внутри самой станции мы можем считать пространство галилеевым (собственное гравитационное поле станционной массы пренебрежимо мало) и в ней можно ввести инерциальную систему отсчета, в которой выполняется принцип Галилея. Причем это распространяется не только на внутреннее пространство станции, но и на ближайшую внешнюю окрестность ее. Это позволяет при стыковке с другим кораблем на близких расстояниях пользоваться механикой инерциальных систем отсчета и даже не принимать во внимание самое существование Земли и ее гравитационного поля. Это существенно упрощает расчеты движений и управлений. В то же время по мере удаления от станции все более и более существенными становятся негалилеевы характеристики окружающего пространства, ввиду лишь локальной его галилеевости. Поэтому при стыковке на «далеких рубежах» надо принимать во внимание гравитационное поле Земли, но можно не учитывать поле Солнца и Луны. К сожалению, существующая механика не дает инструментов учета гравитационного поля Земли в системе отсчета космического корабля и расчетчикам приходится переходить в земную систему отсчета, что, конечно, не удобно.

Итак, мы видим, сколь важную практическую значимость имеет принцип локальной галилеевости негалилеева пространства. И механическая теория, в которой этот принцип не имеет места, не может считаться пригодной для использования в космонавтике. А в ньютоновской механике этого принципа не существует. В этой механике гравитационное поле рассматривается только глобально, как правило, в единой выделенной «коперникианской» системе отсчета - системе отсчета центра масс. Мы назвали эту систему отсчета коперникианской, так как честь обнаружения «главных», выделенных систем отсчета, по праву, принадлежит Копернику. Но космонавтика требует отхода от коперникианской парадигмы, и такой отход происходит постоянно при навигационных космических расчетах. Использование локальных систем отсчета и есть отказ от парадигмы коперникианского глобализма при описании гравитационных полей. Вот почему новую механику можно назвать неньютоновской и некоперникианской или, может более правильно, неоптолемеевской.

Вновь отметим, в механике, связанной с механическими явлениями на поверхности Земли, ньютоновский подход достаточно удобен и эффективен, что показывает все развитие механики в течение столетий. Но в космонавтике этот подход вызывает большие трудности, о которых мы говорили выше. И новый подход максимально раскрывает логику механических процессов в космосе, открывает возможности более простого решения известных задач и формулировки новых.

7.Весомость как фундаментальное понятие механики

Мы показали, что во многих задачах механики, в частности, в задачах небесной механики,исчезают силы. Ведь небесная механика рассматривает, по преимуществу, свободные небесные тела, т.е. тела, к которым не приложены никакие силы.

Как известно, в ньютоновской механике понятие силы является фундаментальным, основным понятием. В механике оно даже не определяется, а берется из других наук, например, физики. Аналогично тому, как в механике не определяется понятия расстояния, оно является для нее фундаментальным и берется из геометрии.

Ясно, что в качестве фундаментальных понятий при аксиоматическом построении теории желательно использовать наиболее важные и широко используемые характеристики. Но парадокс состоит в том, что в разных масштабных областях механического мира таковыми становятся разные характеристики.

Например, ньютоновская механика наиболее хорошо приспособлена для описания явлений макромеханики, т.е. механических явлений в масштабах, сопоставимых с размером человека. И здесь сила является чрезвычайно важным понятием и использование ее в качестве фундаментального понятия вполне оправдано. Действительно, мы наглядно видим по напряжению жил силу лошади, тянущей фуру с дровами, мы видим силу натяжения лука, легко представляем силу на водиле паровой машины. Наконец, по напряжению своих мышц и напряженному дыханию видим силу веса поднимаемого нами бревна.

Но уже в области микромира силы становится плохо представимыми. И на первое место выходят иные механические характеристики, такие как энергия и действие. И соответственно возникают новые механические модели, теории, известные под общим названием «аналитической динамики». Это механики Лагранжа,Гамильтона, Пуанкареи т.д. Фактически, это разные «языки» механики, в которых удобно описывать свой класс и прежде всего масштабный уровень механических явлений. Хотя они в принципе эквивалентны, т.е. дают одинаковые решения одной и той же задачи, но в каждом языке есть класс задач, наиболее наглядно и просто решаемый именно в нем. Более того, распространение механики в область микромира, в квантовую область оказалось возможным именно в этих новых «энергетических» языках, например, в гамильтоновом языке, а для языка Ньютона так и не было построено расширение в квантовую область. Это уже показывает важность создания новых механических языков. Без построения целого класса таких языков на рубеже 19 - 20 веков, возможно, было бы невозможно создание механики микрочастиц, а без этого и создание всей техники, использующей их - электроники, атомной энергетики и т.п. Вот каково значение «языков механики». Ньютоновский язык послужил основой промышленной революции XVIII века и создания механических машин и механизмов. Неньютоновские, энергетические языки механики послужили базисом создания в двадцатом веке теории микромеханических процессов, каковая теория стала базой создания всей электроники, ядерной физики, лазерной техники и других областей техники в двадцатом веке.

Космонавтика, появившаяся в середине двадцатого века, до сих пор использует механический язык Ньютона, который разработан для иных масштабов механических явлений. Для космонавтики он плохо подходит. Отсутствие в этом языке такого центрального понятия как невесомость, а тем более «весомость», широкое использование таких уродливых и недопустимых в науке словечек как «перегрузка» (а что такое «грузка»?) с еще более ужасными словосочетаниями как «отрицательная перегрузка», «недоперегрузка» и т.д. говорит само за себя. Космонавтика и вообще, область мегамира нуждается в собственном, более адекватном языке. И очевидно, что использование понятия «силы» в качестве фундаментального понятия этого языка уже не может иметь места. Необходимо новое фундаментальное механическое понятие, на базе которого и должен строиться новый язык механики, более адекватный задачам описания космонавтики и мегамира.

Для того, чтобы найти это новое фундаментальное понятие, обратимся к космонавтике. В космонавтике «невесомость» есть центральное понятие.

Мы все легко можем определить наличие невесомости по телевизионной картинке. Но что это такое с точки зрения механической науки? Приведем лишь некоторые из определений невесомости из наиболее авторитетных источников..

Невесомость - состояние, когда сила взаимодействия тела с опорой (кажущийся вес тела), возникающая в связи с гравитационным притяжением или в связи с ускорением тела, исчезает. Иногда можно слышать другое название этого эффекта - микрогравитация.(Википедия ).

Определение просто невразумительное. Что за «сила взаимодействия в связи с ускорением»? Нет такого понятия в механике. А что такое «кажущийся вес»? И путать микрогравитацию с невесомостью вряд ли допустимо. Это разные понятия.

Невесомостью называется состояние, при котором действующие на тело гравитационные силы не вызывают взаимных давлений его частей друг на друга (Астрономический словарь на сайте Института космических исследований РАН) .

Вообще непонятно, почему вдруг «взаимные давления» внутри тела исчезают в космосе или у парашютиста в прыжке? Что, у него исчезает сердечное давление или клапан уже не давит на свое седло. Или исчезает внутреннее давление в жидкости, формирующее сферические капли в невесомости? И как определить, эти взаимные давления связаны с гравитационными силами или нет? И разве это соответствует телевизионной картинке с космического корабля? Даже самый малограмотный человек сразу скажет, что невесомость - это что-то совсем иное, а тем более сами космонавты.

Невесомость , - состояние тел вне сил притяжения (Русский орфографический словарь Российской академии наук).

Определение способно вызвать только улыбку. Но ведь создатели словаря - лингвисты - не сами это придумали, а пользовались, наверняка, консультацией специалистов из Академии наук.

Невесо мость - состояние материального тела, при котором действующие на него внешние силы или совершаемое им движение не вызывают взаимных давлений частиц друг на друга (Большая советская энциклопедия ).

Сопоставить как однопорядковое «силы» и «совершаемые движения» - это что-то лежащее за пределами механики. Заметим также, что во всех определениях имеется термин «состояние», хотя в механике нет понятия«состояние».

Таким образом, центральное понятие космонавтики - невесомость - в современной механике вообще не имеет сколько-нибудь корректного описания. Ощущение такое, что для теоретической механикиона «терра инкогнито», ворвавшаяся в сферу реальной механической практики, но для которой места в теории нет. Потому и сочиняют кто во что горазд.

Но если есть «невесомость», то должна быть и «весомость», отсутствие каковой создает «не-весомость». Таково требования научной логики, законов построения языков науки.

И для построения нового языка мы постулируем существование нового понятия механики - понятия «механического состояния механического объекта ». Этого понятия нет в механике Ньютона. Это новое концептуальное понятие для нового языка. И соответственно «весомость » есть характеристика механического состояния тела . А невесомость есть особый, частный случай весомого состояния, весомого состояния с отсутствующей весомостью.

Остается дать характеристику понятию весомость. Мы принимаем, что в новом языке механики весомость есть фундаментальное, неопределяемое в самом языке понятие, заменяющее фундаментальное понятие силы в ньютоновском языке. Весомость есть вектор, приложенный к самому телу и перемещающийся вместе с телом.

Мы не можем определить в самом языке понятие весомости, но зато можем дать описание устройств, которые измеряют эту величину. Эти измерители весомости мы будем называть «весомометрами ». Оказывается, весомометры широко используются в технике и, прежде всего, в космонавтике. Только носят они странное название «акселерометров », т.е. измерителей ускорений. Понятно, что никакого ускорения грузикна пружинке измерять не может (Академик Ишлинский поэтому предлагал для этих приборов название «ньютонометры», что лучше, но не совсем). Измеряет он не кинематическую характеристику - ведь последняя величина относительная и зависит от системы отсчета и наблюдателя, а именно характеристику механического состояния объекта. Есть и еще одно название у весомометров - это название «гравиметры », которое используется в гравиметрии. Это, во всяком случае, лучше, чем акселерометр. Заодно заметим, что человек (и иные животные) имеет орган чувства - шестой орган чувства - который состоит из целого набора весомометров. Этот орган чувства - вестибулярный аппарат - расположен во внутреннем ухе человека. Сами физиологические весомометры имеют некоторое медицинское название, но не имеют механического, ибо назвать эти внутренние физиологические весомометры акселерометрами у теоретиков-механиков не хватило духу, слишком это бы резало уши .

А связь неоптолемеевской механики с механикой Ньютона осуществляется через понятие силы . Нотеперь сила есть уже вторичное, производное понятие. Сила есть векторная величина пропорциональный произведению модуля весомости и массы тела и антиколлинеарный вектору весомости.

Здесь m - масса, W - вектор весомости, F - вектор силы. Вновь напомним, силы только электромагнитные, гравитационных нет. Так как к камню приложена сила опоры, направленная вверх, то весомость тел на Земле направлена вниз.

Отсюда сразу же видно, что с точки зрения ньютоновской механики весомость есть удельная сила, т.е. сила на единицу массы, правда, ориентированная в противоположную сторону по отношению к вектору силы.

И, наконец, уже не просто определение силы, а содержательная аксиома механики состоит в третьем законе Ньютона: сила реакции равна активной силе, но направлена в противоположную сторону.

Связь между движением и механическим состоянием в инерциальной системе отсчета в новой механике дается модифицированным Вторым законом (аксиомой) Ньютона : ускорение пропорционально весомости, но направление его обратно вектору весомости.

w – ускорение тела в инерциальной системе отсчета, W - его весомость. Получаем фундаментальный закон механики в очень простом виде. В это уравнение не входят никакие внутренние, имманентные характеристики тела. Это очень важно. Все тела движутся одинаково, если находятся в одинаковом механическом состоянии от какой-нибудь пылинки до снаряда главного калибра линкора.

В свое время Галилей, бросая камни с Пизанской башни, пришел к выводу, что все тела падают одинаково. Новый закон механики расширяет это утверждения до такого: все тела движутся одинаково, если находятся в одинаковом механическом состоянии.

В СИ единицей весомости является единица Н/кг. Эту единицу в гравиметрии принято называть Галилео, сокращенно Гл. Весомость на поверхности Земли 9.81 Гл, на поверхности Луны - 1.62 Гл, в ракете на участке выведения порядка 40 Гл, на боевом развороте в истребителе до 80 Гл, баллистической ракеты «Тополь-М» на взлете до 120 Гл, весомость пушечного снаряда при разгоне в канале ствола может составлять до 100 кГл., микрогравитационная весомость в орбитальной станции составляет порядка 1 нГл (наноГалилео). Мы видим, в каких больших пределах изменяется весомость, с которой имеет дело практика.

8.Весомика

Новая механика инициирует создание новой механической дисциплины - весомики . Это наука о механическом состоянии. Она найдет свое применение в самых различных прикладных науках и техниках. Это космическая, авиационная и морская медицина, биофизика, ветеринария, прочностные науки, спортивная медицина, механика спортивных дисциплин, механика и конструирование машин, аппаратов и парковых аттракционов и т.п. И прежде всего она даст всем этим наукам и техникам единую научною терминологию вместо каких-то странных «перегрузок», «недогрузок» и т.п.В новой механике весомика призвана занять такое же место, как статика в ньютоновской механике.

Итак, мы определили основные понятия нового механического языка. Если механический объект рассматривается как элементарный, неделимый, то он характеризуется единым вектором весомости, как и единой силой. Если же мы имеем составной механический объект, называемый телом, то имеем распределение весомости на теле. Это распределение может быть плоским, т.е. все части тела имеют одинаковую весомость. Но может быть и сложным, если тело совершает собственные движения, например, вращения или находится в негалилеевом пространстве.

9.Описание гравитационного поля

Итак, гравитационное поле есть область негалилеева пространства. Как же описать это пространство?

В ньютоновской механике есть гравитационные силы. Потому гравитация описывается напряженностью поля, т.е. распределением удельных гравитационный сил, сил, приложенных к единичной массе.

Но в новой механике нет гравитационных сил, а гравитация есть всего лишь свойство пространства. Поэтому ньютоновский подход не пригоден.

В гравитационном подходе Эйнштейна гравитация есть свойство, которое искривляет пространство. Это искривление приводит к тому, что координатная сетка (геодезические линии), которая в ОТО состоит из линий движения света, становится искривленной. Кривизна этого пространства и определяет гравитационное поле. Но ни в области космонавтики, ни в небесной механики, и даже в звездной и галактической механике это описание практически неприменимо. Слишком ничтожны в этих масштабах искривления световых траекторий и практические гравитационные поля для ОТО слишком малы. Использовать ОТО в области практически используемых гравитационных явлений то же самое, что использовать метровую рулетку для измерения атомных расстояний. В отличие от этого ньютоновский подход приводит к адекватным гравитационным характеристикам в масштабах космонавтики или небесной механики.

Итак, мы приходим к выводу: ньютоновский подход дает хорошее описание практически значимых гравитационных полей, но он основан на гравитационных силах, которых у нас нет, эйнштейновский подход основан на изменении свойств пространства, но он эффективен лишь в области сверхсильных гравитационных полей, ни в космонавтике, ни в небесной механике практически не встречающихся. Ему, возможно, есть место в космологии, но никак не в области описания полетов на околоземные орбиты или внутри Солнечной системы. А требуется создать описание гравитационного поля размерностно адекватное ньютоновскому, но при этом основывать это описание на изменении свойств пространства, как в эйнштейновском подходе.

И оказывается, это можно сделать. Для этого только нужно использовать фундаментальную величину новой механики - весомость.

В галилеевом пространстве можно создать инерциальную систему отсчета, в которой свободные тела движутся равномерно и прямолинейно или покоятся. Отсюда следует, что в галилеевом пространстве можно создать среду из покоящихся и невесомых тел. Но эта среда как раз и может быть системой отсчета. Нужно лишь эти покоящиеся невесомые тела определенным образом пометить, приписать им координаты, ииспользовать их для описания движений тел.

В негалилеевом пространстве свободные тела не могут быть неподвижны относительно друг друга. Любой ансамбль свободных тел начнет расползаться. А если мы хотим, чтобы тела в гравитационном поле были неподвижны друг относительно друга, их надо как-то скрепить друг с другом, т.е. приложить к ним силы. Причем, опять-таки, никакие не гравитационные, а обычные, электрической или магнитной природы.

Но если мы приложили к телам силы, то они уже перестают быть свободными и становятся уже весомыми. И в этой неподвижной среде существует распределение весомости. Это распределение весомости мы и можем использовать в качестве полевой характеристики гравитационного поля. Таким образом, именно поле весомости в неподвижной среде и может стать характеристикой гравитационного поля. Это распределение весомостей мы также можем назвать напряженностью гравитационного поля .

Легко видеть, что мы пришли численно к тому же самому ньютоновскому гравитационному полю, к удельной силе, только теперь ее переинтерпретировали:: не удельная сила тяготения, а удельная сила негравитационных сил, т.е. весомость, стала напряженностью гравитационного поля. Но значения напряженностей гравитационных полей в обеих теориях полностью совпадают.

Казалось бы, мыпришли к тому же самому, и никакой разницы в реальном описании гравитационных полей нет. Но не совсем. Дело в том, что гравитационная сила абсолютна, абсолютны силы, действующие между гравитирующими телами по закону всемирного тяготения. Потому гравитационного поля единственны и абсолютны. Они требует единственной и выделенной системы отсчета, т.е. коперникианской системы отсчета. Но в новой механике это есть распределение весомостей в жесткой виртуальной среде. А таких виртуальных сред можно ввести в пространстве сколько угодно. Нет априори выделенных сред.. Можно выбирать в качестве исходных тел различные тела, к которым и «прикреплять» другие тела с целью создания координатной среды. От абсолютного гравитационного поля мы приходим к многовариантному, относительному гравитационному полю. Так мы пришли к еще большей общей относительности гравитации, она оказывается «еще более относительной», чем это представлялось Эйнштейну.

Но эта относительность уже отнюдь не теоретический кунштюк для какой-то там «общей ковариантности». Она практична и необычайно важна для космонавтики. Например, мы можем в качестве исходного тела принять центр Земли и построить гравитационное поле в системе отсчета с неподвижным центром Земли. Космонавт на орбите может принять в качестве исходного тела свой корабль и построить систему отсчета с самим собой в качестве неподвижного начала отсчета и с соответствующим распределением весомостей в этой среде, каковая и будет гравитационным полем. Это космонавтоцентрицеское гравитационное поле будет существенно отличаться от геоцентрического.Конечно, необходимо еще открыть законы перехода от одного гравитационного поля к другому, и создать соответствующий математический аппарат,. Но это уже дело техническое. И космонавту в ряде случаев будет удобнее рассматривать движение тел в космонавтоцентрической системе отсчета. А лунонавту на лунной станции - в селеноцентрической системе отсчета, земному астроному - в геоцентрической (птолемеевской), а школьникам и студентам для наглядного представления строения Солнечной системы будет полезно использовать гелиоцентрическую систему. Таким образом, неоптолемеевская механика не отвергает коперникианскую, а всего лишь ставит ее в один ряд с другими системами отсчета, в том числе и птолемеевской. И вопрос, какая система правильная, вопрос, за который столько пролито крови и всходили на костры, оказался вопросом не религии или идеологии, а чистого прагматизма- какая система выгодней в той или иной задаче, такой и надо пользоваться. Новая механика объединяет Птолемея и Коперника, Джордано Бруно и его палачей.

При этом сразу же отметим, что все перечисленные выше системы отсчета связаны со свободными телами, потому все они локально галилеевы, т.е. в начале этих систем нет гравитационного поля, а напряженность поля нулевая.. Мы получили важнейшее свойство гравитационных полей, связанных со свободными телами, которого нет в нынешней механической теории, а вот практическая космонавтика ими пользуется давно. Но использование тех или иных схем и фактов без их теоретического обоснования нередко ведет к ошибкам и иным неблагоприятным результатам. Вот почему теоретическое обоснование космической практики важно.

10.Движение тел в гравитационном поле

А теперь мы можем записать и уравнение движения свободных тел в гравитационном поле. Это уравнение записывается очень просто: ускорение w свободного (невесомого) тела равно напряженности гравитационного поля V :

Каково ускорение свободного падения в поле Земли? Оно численно равно напряженности гравитационного поля на поверхности Земли и направлено в ту же сторону. Весомость на поверхности Земли нам известна, W =9.81 Гл. Но эта весомость есть одновременно и напряженность гравитационного поля на поверхности Земли, V =9.81 Гл. Отсюда и ускорение свободного падения численно равно напряженности поля, но имеет, естественно, другие единицы измерения - w =9.81 м/c 2 .

И, наконец, обобщенный закон движения весомого тела в гравитационном поле будет: ускорение весомого тела в гравитационном поле равно напряженности поля за минусом его весомости, т.е.

Мы получили обобщение Второго закона Ньютона. Он прекрасно объясняет все факты. Если тело неподвижно, ускорение равно нулю, то в гравитационном поле весомость равна напряженности поля и наоборот, напряженность гравитационного поля равна весомости неподвижных тел. Если гравитационного поля нет, то ускорение равно весомости тела с обратным знаком.А если есть гравитационное поле, а тело свободно, то его ускорение направлено вдоль напряженности поля и численно равно ему. Очень простая и наглядная интерпретация движений и состояний.

Заметим опять, никакие собственные, внутренние характеристики (например, масса) тела в это уравнение не входят. Важность этого для навигационных расчетов в космонавтике и вообще в механике трудно переоценить. Это еще большее расширение принципа Галилея: все тела в одном гравитационном поле и в одном механическом состоянии движутся одинаково.

11.Гармонические системы отсчета

Но сразу же отметим, что это уравнение получено не для произвольной системы отсчета, а лишь для специальных, так называемых, гармонических систем отсчета. Гармонической системой отсчета является система отсчета, которая инерциальна на бесконечности. Инерциальные системы отсчета являются, естественно, и гармоническими. Но неинерциальные системы отсчета в галилеевом пространстве уже негармоничны. В негалилеевом пространстве инерциальных систем не существует, но существуют системы отсчета, которые инерциальны за пределами области негалилеевости, т.е. на бесконечности. Это и есть гармонические системы отсчета. Если гравитацию «снять», то они превращаются в инерциальные системы отсчета. Например, система отсчета, связанная с Землей, ориентированная на удаленные звезды, не является инерциальной в связи с наличие поля Земли, но она гармонична. Поэтому проблема построения инерциальной системы отсчета на Земле формулируется не совсем верно. Это проблема построения гармонической системы отсчета. Она очень важна даже в бытовой жизни, например, для сотовой и космической связии систем космической навигации. Решаться она может либо по далеким звездам, либо через использование внутренних стабилизирующих устройств, например, гироскопов. Это также является важнейшей и постоянной задачей космонавтики.

Законы движения в негармонических, фактически, вращающихся системах отсчета усложняются, но на этом мы останавливаться не будем, так как наша задача не построение всей новой механики, а лишь демонстрация ее необходимости и формулировка тех основных понятий и законов, которые отличают ее от нынешней ньютоно-коперникианской механики. И вновь подчеркнем. Нынешняя механика не отвергается, она хороша и верна для круга явлений либо вне гравитационного поля, либо в постоянном гравитационном поле, т.е. в механике на поверхности Земли. Но в космонавтике, где имеется сложнейшее сочетание изменяющихся гравитационных полей и разнообразнейших движений, где объектом движения становятся не мертвые камни и космические тела, а мыслящее существо, человек, она неудовлетворительна.

12.Уравнения гравитационного поля

А теперь мы можем записать уравнения гравитационного (весомостного) поля. Это уравнение имеет вид идентичный полевому уравнению в ньютоновской механике:

Здесь r есть плотность вещества.

На первый взгляд это обычное уравнение ньютоновского гравитационного поля. Но здесь есть тонкости. Они следующие:

1.Полевое уравнение в механике Ньютона записывается в системе центра масс, т.е. в коперникианской системе отсчета. В нашей механике это уравнение верно для любой гармонической системы отсчета. Т.е. оно верно как для системы Солнца, так и в системе отсчета Земли и в системе отсчета орбитального или межпланетного корабля.

2.Из математики известно, что для решения этого уравнения необходимо задать или граничные, или начальные условия. Электромагнитное поле требует задания граничных условий. А вот гравитационное поле требует задания начальных. Граничные условия - нулевые условия на бесконечности для гармонической системы отсчета удовлетворяются автоматически. А начальные условия, т.е. напряженность поля в начале системы отсчета, т.е. весомость начального тела системы отсчета должны быть задано. И если начало системы отсчета связано со свободным телом, то эта система отсчета является локально инерциальной и начальное значение поля является нулевым. V (0)=0.

3.Из математики также известно, что для определения векторного поля задание одной дивергенции. недостаточно. Необходимо задать еще и ротор поля. Если принять, что гравитационное поле является потенциальным, то это означает, что ротор поля равен нулю и тогда система уравнений гравитационного поля в гармонической системе отсчета запишется в виде:

Таким образом, эта система полевых уравнений описывает гравитационное поле (поле весомости) в гармонической системе отсчета. Для негармонических систем отсчета распределение поля весомости будет иным, но об этом мы пока не будем распространяться.

13.Расширение гравитационной теории гравитации Ньютона

Существует ли расширение гравитационной теории? Мы имеем ввиду стандартный путь расширения путем добавления некоторых новых членов? Да. Для этого стоит ввести в правую часть второго уравнения ненулевой член. Так как уравнение аксиально-векторное, то и справа нужно внести какую-то аксиально-векторную характеристику среды. Есть такая? Да, это плотность собственного момента вращения (спина) s . И учитывая размерности, мы можем этот систему уравнений гравитационного поля в гармонической системе отсчета записать в виде:

Здесь а - некоторая безразмерная константа, которую предстоит еще определить из наблюдений.

Что означает добавление этого члена? Это означает, что в окрестности вращающегося тела имеется дополнительная вихревая компонента гравитационного поля. Вихревое поле одиночного вращающегося тела подобно магнитному полю одиночного магнитного диполя. Оно спадает очень быстро, по кубу радиуса. И потому может оказывать влияние на движение только в ближайшей окрестности.

В ближайшей окрестности Солнца находится планета Меркурий. Несоответствие ее движения ньютоновским законам отмечено уже давно. И если считается, что это нашло свое отражение в эйнштейновской гравитационной теории, то почему это не может найти отражение и в модернизированной, неоньютоновской теории гравитации? Другой возможный эффект связан с воздействием этого поля на гироскоп в виде изменения оси его вращения.. И этот эффект, видимо, уже обнаружен в эксперименте на американском спутнике GP -B (гравитационный зонд – B ), запущенном в апреле 2004 года.

Возможны и иные проявления этого поля. При расчетах искривления света при прохождении его вблизи диска Солнца по ньютоновской теории (по этой теории все механические объекты движутся одинаково, движение определяется лишь начальными условиями) значение получается отличным от наблюдаемого. Вполне можно допустить, что это связано именно с влиянием вихревого поля Солнца. Вихревое поле будет особенно сильно влиять на движение газообразного и плазменного вещества в верхней оболочке Солнца. Вполне возможно, что это даст новые подходы в физике Солнца и солнечной атмосферы и ее активности. Вообще, вращение есть один из важнейших астрофизических факторов. И введение вихревой компоненты гравитационного поля может очень сильно изменить наши представления об устройстве мегамира. Образно говоря, если потенциальная компонента гравитационного поля обеспечивает устойчивость вселенной, то вихревая придает ему динамику. А ведь поразительную динамичность мы и наблюдаем в космосе, мегамире и даже на Земле.

14.Заключение

Прошлая (и нынешняя) ньютоно-коперникианская механика не отвечает требованиям, которые ставит перед механической теорией современная космонавтика. Она не дает космическому опыту адекватного теоретического описания,а нередко и просто ему противоречит. Только новая неньютоновская и некоперникианская механика позволит открыть перед космонавтикой и, даже более широко, перед механикой и ее практическими приложениями новые горизонты. В основе этой механики лежит новое понимание гравитации, гравитации без гравитационных сил, но, возможно, с вихревой компонентой.

Гравитация – это, казалось бы, простое понятие, известное каждому человеку еще со времен школьной скамьи. Все мы помним историю о том, как на голову Ньютона упало яблоко, и он открыл закон всемирного тяготения. Однако все не так просто, как кажется. В той статье мы попытаемся дать ясный и исчерпывающий ответ на вопрос: что такое гравитация? А также рассмотрим главные мифы и заблуждения об этом интересном явлении.

Говоря простыми словами, гравитация — это притяжение между двумя любыми объектами во вселенной. Гравитацию можно определить, зная массу тел и расстояние от одного до другого. Чем сильнее гравитационное поле, тем больше будет вес тела и выше его ускорение. Например, на Луне вес космонавта будет в шесть раз меньше, чем на Земле. Сила гравитационного поля зависит от размеров объекта, который оно окружает. Так, лунная сила притяжения в шесть раз ниже земной. Впервые обосновал это научно и доказал с помощью математических вычислений ещё в XVII веке Исаак Ньютон.

Что упало на голову Ньютону

Несмотря на то, что сам великий английский ученый частично подтверждал известную всем легенду о яблоке и ушибе головы, всё же, сейчас можно сказать с уверенностью, что при открытии закона всемирного тяготения обошлось без травм и озарений. Основой, заложившей новую эру в естественных науках, стал труд «Математические начала натуральной философии». В нем Ньютон описывает закон тяготения и важные законы механики, открытые им за долгие годы напряженной работы. Знаменитый физик был натурой неторопливой и рассудительной, как и положено гениальному ученому. А поэтому от начала раздумий о природе тяготения до издания научной работы о ней прошло больше 20 лет. Впрочем, легенда об упавшем фрукте могла иметь под собой и какие-то реальные основания, вот только голова физика однозначно осталась цела.

Законы притяжения изучались и до Исаака Ньютона самыми различными научными деятелями. Но только он впервые математически доказал прямую взаимосвязь между тяготением и движением планет. То есть падающим с ветки яблоком и вращением луны вокруг земли управляет одна и та же сила – гравитация. И она действует на любые два тела во вселенной. Эти открытия заложили основу так называемой небесной механики, а также науки о динамике. Ньютоновская модель господствовала в науке более двух веков вплоть до появления теории относительности и квантовой механики.

Что думают о гравитации современные ученые

Гравитация является самым слабым из четырех известных на данный момент фундаментальных взаимодействий, которым подчиняются все частицы и составленные из них тела. Помимо гравитационного взаимодействия сюда же входят электромагнитное, сильно и слабое. Исследуются они на основании разных теорий, так, например, в приближенных скоростях небольшой гравитации применяют теорию тяготения еще самого Ньютона. А в общем случае используют общую теорию относительности Эйнштейна. Кроме того, описание гравитации в квантовом пределе должно будет осуществляться при помощи еще не появившейся квантовой теории.

Безусловно, сегодня физика сложна и выходит далеко за рамки представлений об окружающем мире обычного человека. Но интересоваться ей необходимо хотя бы на уровне основных понятий, ведь вполне возможно, что уже в ближайшее время мы можем стать свидетелями удивительных открытий в этой области, которые кардинально изменят жизнь человечества. Будет неловко, если вы вообще не поймете, что происходит.

Мифы о гравитации

Не только незнание, но и постоянные новые открытия в данной научной сфере порождают различные несуразицы и мифы о гравитации. Итак, несколько общепринятых заблуждений об этом уникальном явлении:

  • Искусственные спутники никогда не сойдут с орбиты Земли и будут вечно вращаться вокруг неё . Это неправда. Дело в том, что помимо земного притяжения в космосе имеются и другие различные факторы, влияющие на орбиту тел. Это и торможение атмосферы для низких орбит и гравитационные поля Луны и других планет. Скорее всего, если дать спутнику вращаться без контроля на долгое время, его орбита будет изменяться, и в конечном счете он либо улетит в космические просторы, либо упадет на поверхность ближайшего тела.
  • В космосе отсутствует гравитация. Даже на станциях, на которых космонавты пребывают в невесомости есть довольно сильная гравитация, чуть меньше, чем на Земле. Почему же тогда они не падают? Можно сказать, что сотрудники станции как бы находятся в состоянии постоянного падения, но никак упадут.
  • Объект, приблизившийся к чёрной дыре, будет разорван. Довольно известный миф. Сила притяжение черной дыры действительно увеличится при приближении к ней, но совсем не обязательно, что приливные силы окажутся настолько мощными. Скорее всего они на горизонте событий обладают конечным значением, поскольку расстояние считается от центра дыры.

Между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона , в общем случае описывается общей теорией относительности Эйнштейна . В квантовом пределе гравитационное взаимодействие предположительно описывается квантовой теорией гравитации , которая ещё не разработана.

Энциклопедичный YouTube

    1 / 5

    ✪ Визуализация гравитации

    ✪ УЧЁНЫЕ НАС ДУРЯТ С РОЖДЕНИЯ. 7 КРАМОЛЬНЫХ ФАКТОВ О ГРАВИТАЦИИ. РАЗОБЛАЧЕНИЕ ЛЖИ НЬЮТОНА И ФИЗИКОВ

    ✪ Гравитация

    ✪ 10 любопытных фактов о гравитации

    ✪ Александр Чирцов - Гравитация: развитие взглядов от Ньютона до Эйнштейна

    Субтитры

Гравитационное притяжение

Закон всемирного тяготения - одно из приложений закона обратных квадратов , встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести , потенциально . Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим . Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты - планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация - слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления - орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель (IV в. до н. э.) считал, что объекты с разной массой падают с разной скоростью. И только много позже (1589) Галилео Галилей экспериментально определил, что это не так - если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности , более точно описывающую гравитацию в терминах геометрии пространства-времени.

Небесная механика и некоторые её задачи

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера .

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы , аттракторы , хаотичность и т. д. Наглядный пример таких явлений - сложная структура колец Сатурна.

Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса .

Сильные гравитационные поля

В сильных гравитационных полях, а также при движении в гравитационном поле с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности (ОТО):

  • изменение геометрии пространства-времени;
    • как следствие, отклонение закона тяготения от ньютоновского;
    • и в экстремальных случаях - возникновение чёрных дыр ;
  • запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений ;
    • как следствие, появление гравитационных волн;
  • эффекты нелинейности: гравитация имеет свойство взаимодействовать сама с собой, поэтому принцип суперпозиции в сильных полях уже не выполняется.

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение , наличие которого было подтверждено прямыми наблюдениями в 2015 году . Однако и раньше были весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, в знаменитой системе PSR B1913+16 (пульсаре Халса - Тейлора) - хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением.

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами , этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного n -польного источника пропорциональна (v / c) 2 n + 2 {\displaystyle (v/c)^{2n+2}} , если мультиполь имеет электрический тип, и (v / c) 2 n + 4 {\displaystyle (v/c)^{2n+4}} - если мультиполь магнитного типа , где v - характерная скорость движения источников в излучающей системе, а c - скорость света. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

L = 1 5 G c 5 ⟨ d 3 Q i j d t 3 d 3 Q i j d t 3 ⟩ , {\displaystyle L={\frac {1}{5}}{\frac {G}{c^{5}}}\left\langle {\frac {d^{3}Q_{ij}}{dt^{3}}}{\frac {d^{3}Q^{ij}}{dt^{3}}}\right\rangle ,}

где Q i j {\displaystyle Q_{ij}} - тензор квадрупольного момента распределения масс излучающей системы. Константа G c 5 = 2 , 76 × 10 − 53 {\displaystyle {\frac {G}{c^{5}}}=2,76\times 10^{-53}} (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ. ) ), предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO , VIRGO , TAMA (англ. ) , GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna - лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном Центре Гравитационно-Волновых Исследований «Дулкын» республики Татарстан .

Тонкие эффекты гравитации

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и поэтому их обнаружение и экспериментальная проверка весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчёта (или эффект Лензе-Тирринга) и гравитомагнитное поле . В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.

После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters . Измеренная величина геодезической прецессии составила −6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения - −37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями −6606,1 mas/год и −39,2 mas/год ).

Классические теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации - общая теория относительности , и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

Общая теория относительности

Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.

Теория Эйнштейна - Картана

Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского . Благодаря наличию безразмерного параметра в теории Йордана - Бранса - Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана - Бранса - Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.

Квантовая теория гравитации

Несмотря на более чем полувековую историю попыток, гравитация - единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория . При низких энергиях, в духе квантовой теории поля , гравитационное взаимодействие можно представить как обмен гравитонами - калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема , и поэтому считается неудовлетворительной.

В последние десятилетия разработаны несколько перспективных подходов к решению задачи квантования гравитации: теория струн , петлевая квантовая гравитация и прочие.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги -

Оби-Ван Кеноби сказал, что сила скрепляет галактику. То же самое можно сказать и о гравитации. Факт – гравитация позволяет нам ходить по Земле, Земле вращаться вокруг Солнца, а Солнцу двигаться вокруг сверхмассивной черной дыры в центре нашей галактики. Как понять гравитацию? Об этом - в нашей статье.

Сразу скажем, что вы не найдете здесь однозначно верного ответа на вопрос «Что такое гравитация». Потому что его просто нет! Гравитация – одно из самых таинственных явлений, над которым ученые ломают голову и до сих пор полностью не могут объяснить его природу.

Есть множество гипотез и мнений. Насчитывается более десятка теорий гравитации, альтернативных и классических. Мы рассмотрим самые интересные, актуальные и современные.

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Гравитация – физическое фундаментальное взаимодействие

Всего в физике 4 фундаментальных взаимодействия. Благодаря им мир является именно таким, какой он есть. Гравитация – одно из этих взаимодействий.

Фундаментальные взаимодействия:

  • гравитация;
  • электромагнетизм;
  • сильное взаимодействие;
  • слабое взаимодействие.
Гравитация – самое слабое из четырех фундаментальных взаимодействий.

На текущий момент действующей теорией, описывающей гравитацию, является ОТО (общая теория относительности). Она была предложена Альбертом Эйнштейном в 1915-1916 годах.

Однако мы знаем, что об истине в последней инстанции говорить рано. Ведь несколько веков до появления ОТО в физике для описания гравитации главенствовала Ньютоновская теория, которая была существенно расширена.

В рамках ОТО на данный момент нельзя объяснить и описать все вопросы, связанные с гравитацией.

До Ньютона было широко распространено мнение, что гравитация на земле и небесная гравитация – разные вещи. Считалось, что планеты движутся по своим, отличным от земных, идеальным законам.

Ньютон открыл закон всемирного тяготения в 1667 году. Конечно, этот закон существовал еще при динозаврах и намного раньше.

Античные философы задумывались над существованием силы тяготения. Галилей экспериментально рассчитал ускорение свободного падения на Земле, открыв, что оно одинаково для тел любой массы. Кеплер изучал законы движения небесных тел.

Ньютону удалось сформулировать и обобщить результаты наблюдений. Вот что у него получилось:

Два тела притягиваются друг к другу с силой, называемой гравитационной силой или силой тяготения.

Формула силы притяжения между телами:

G – гравитационная постоянная, m – массы тел, r – расстояние между центрами масс тел.

Каков физический смысл гравитационной постоянной? Она равна силе, с которой действуют друг на друга тела с массами в 1 килограмм каждое, находясь на расстоянии в 1 метр друг от друга.


По теории Ньютона, каждый объект создает гравитационное поле. Точность закона Ньютона была проверена на расстояниях менее одного сантиметра. Конечно, для малых масс эти силы незначительны, и ими можно пренебречь.

Формула Ньютона применима как для расчету силы притяжения планет к солнцу, так и для маленьких объектов. Мы просто не замечаем, с какой силой притягиваются, скажем, шары на бильярдном столе. Тем не менее эта сила есть и ее можно рассчитать.

Сила притяжения действует между любыми телами во Вселенной. Ее действие распространяется на любые расстояния.

Закон всемирного тяготения Ньютона не объясняет природы силы притяжения, но устанавливает количественные закономерности. Теория Ньютона не противоречит ОТО. Ее вполне достаточно для решения практических задач в масштабах Земли и для расчета движения небесных тел.

Гравитация в ОТО

Несмотря на то, что теория Ньютона вполне применима на практике, она имеет ряд недостатков. Закон всемирного тяготения является математическим описанием, но не дает представления о фундаментальной физической природе вещей.

Согласно Ньютону, сила притяжения действует на любых расстояниях. Причем действует мгновенно. Учитывая, что самая большая скорость в мире – скорость света, выходит несоответствие. Как гравитация может мгновенно действовать на любые расстояниях, когда для их преодоления свету нужно не мгновение, а несколько секунд или даже лет?

В рамках ОТО гравитация рассматривается не как сила, которая действует на тела, но как искривление пространства и времени под действием массы. Таким образом гравитация – не силовое взаимодействие.


Каково действие гравитации? Попробуем описать его с использованием аналогии.

Представим пространство в виде упругого листа. Если положить на него легкий теннисный мячик, поверхность останется ровной. Но если рядом с мячиком положить тяжелую гирю, она продавит на поверхности ямку, и мячик начнет скатываться к большой и тяжелой гире. Это и есть «гравитация».

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие гравитационных волн

Гравитационные волны были предсказаны Альбертом Эйнштейном еще в 1916 году, но открыли их только через сто лет, в 2015.

Что такое гравитационные волны? Снова проведем аналогию. Если бросить камень в спокойную воду, от места его падения по поверхности воды пойдут круги. Гравитационные волны – такая же рябь, возмущение. Только не на воде, а в мировом пространстве-времени.

Вместо воды – пространство-время, а вместо камня, скажем, черная дыра. Любое ускоренное передвижение массы порождает гравитационную волну. Если тела находятся в состоянии свободного падения, при прохождении гравитационной волны расстояние между ними изменится.


Так как гравитация – очень слабое взаимодействие, обнаружение гравитационных волн было связано с большими техническими трудностями. Современные технологии позволили обнаружить всплеск гравитационных волн только от сверхмассивных источников.

Подходящее событие для регистрации гравитационной волны - слияние черных дыр. К сожалению или к счастью, это происходит достаточно редко. Тем не менее ученым удалось зарегистрировать волну, которая буквально раскатилась по пространству Вселенной.

Для регистрации гравитационных волн был построен детектор диаметром 4 километра. При прохождении волны регистрировались колебания зеркал на подвесах в вакууме и интерференция света, отраженного от них.

Гравитационные волны подтвердили справедливость ОТО.

Гравитация и элементарные частицы

В стандартной модели за каждое взаимодействие отвечают определенные элементарные частицы. Можно сказать, что частицы являются переносчиками взаимодействий.

За гравитацию отвечает гравитон – гипотетическая безмассовая частица, обладающая энергией. Кстати, в нашем отдельном материале читайте подробнее о наделавшем много шума бозоне Хиггса и других элементарных частицах.

Напоследок приведем несколько любопытных фактов о гравитации.

10 фактов о гравитации

  1. Чтобы преодолеть силу гравитации Земли, тело должно иметь скорость, равную 7,91 км/с. Это первая космическая скорость. Ее достаточно, чтобы тело (например, космический зонд) двигалось по орбите вокруг планеты.
  2. Чтобы вырваться из гравитационного поля Земли, космический корабль должен иметь скорость не менее 11,2 км/с. Это вторая космическая скорость.
  3. Объекты с наиболее сильной гравитацией – черные дыры. Их гравитация настолько велика, что они притягивают даже свет (фотоны).
  4. Ни в одном уравнении квантовой механики вы не найдете силы гравитации. Дело в том, что при попытке включения гравитации в уравнения, они теряют свою актуальность. Это одна из самых важных проблем современной физики.
  5. Слово гравитация происходит от латинского “gravis”, что означает “тяжелый”.
  6. Чем массивнее объект, тем сильнее гравитация. Если человек, который на Земле весит 60 килограмм, взвесится на Юпитере, весы покажут 142 килограмма.
  7. Ученые NASA пытаются разработать гравитационный луч, который позволит перемещать предметы бесконтактно, преодолевая силу притяжения.
  8. Астронавты на орбите также испытывают гравитацию. Точнее, микрогравитацию. Они как бы бесконечно падают вместе с кораблем, в котором находятся.
  9. Гравитация всегда притягивает и никогда не отталкивает.
  10. Черная дыра, размером с теннисный мяч, притягивает объекты с той же силой, что и наша планета.

Теперь вы знаете определение гравитации и можете сказать, по какой формуле рассчитывается сила притяжения. Если гранит науки придавливает вас к земле сильнее, чем гравитация, обращайтесь в наш студенческий сервис . Мы поможем учиться легко при самых больших нагрузках!

Мы живем на Земле, мы перемещаемся по ее поверхности, как по краю какого-то скалистого утеса, который возвышается над бездонной пропастью. Мы держимся на этом краю пропасти только благодаря тому, что на нас действует сила притяжения Земли ; мы не падаем с земной поверхности только потому, что имеем, как говорят, какую-то определенную весомость. Мы мгновенно слетели бы с этого «утеса» и стремительно полетели бы в бездну пространства, если бы вдруг перестала действовать сила тяжести нашей планеты. Мы бесконечно долго носились бы в бездне мирового пространства, не зная ни верха, ни низа.

Передвижение по Земле

Своим передвижением по Земле мы тоже обязаны наличию силы тяжести. Мы ходим по Земле и непрестанно преодолеваем сопротивление этой силы, ощущая ее действие, как некоторый тяжелый груз на своих ногах. Этот «груз» особенно дает себя знать при подъеме в гору, когда приходится волочить его, словно какие-то тяжелые гири, привешенные к ногам. Он не менее резко сказывается и при спуске с горы, вынуждая нас ускорять шаги.

Эти направления – «верх» и «низ» – указывает нам только сила тяжести. Во всех точках земной поверхности она направлена почти к центру Земли. Поэтому, понятия «низ» и «верх» будут диаметрально противоположными для так называемых антиподов, т. е. людей, обитающих на диаметрально противоположных частях поверхности Земли. Например, то направление, которое для живущих в Москве, показывает «низ», для жителей Огненной Земли показывает «верх». Направления, показывающие «низ» для людей, находящихся на полюсе и на экваторе, составляют прямой угол; они перпендикулярны между собой.

Вне Земли, при удалении от нее, сила тяжести уменьшается, так как уменьшается сила притяжения (сила притяжения Земли, как и всякого другого мирового тела, распространяется в пространстве неограниченно далеко) и увеличивается центробежная сила, которая уменьшает силу тяжести. Следовательно, чем выше мы будем поднимать какой-нибудь груз, например, на воздушном шаре, тем меньше будет весить этот груз.

Центробежная сила Земли

Вследствие суточного вращения возникает центробежная сила Земли . Эта сила всюду на поверхности Земли действует в направлении, перпендикулярном к земной оси и в сторону от нее. Центробежная сила невелика по сравнению с силой притяжения . На экваторе она достигает наибольшей величины. Но и здесь, согласно вычислениям Ньютона, центробежная сила составляет только 1/289 долю силы притяжения. Чем дальше к северу от экватора, тем меньше центробежная сила. На самом полюсе она равна нулю .


На некоторой высоте центробежная сила возрастет настолько, что она будет равна силе притяжения, и сила тяжести сделается сначала равной нулю, а затем, с увеличением расстояния от Земли, примет отрицательное значение и будет непрерывно возрастать, будучи направлена в противоположную сторону по отношению к Земле.

Сила тяжести

Равнодействующая силы притяжения Земли и центробежной силы называется силой тяжести . Сила тяжести во всех точках земной поверхности была бы одинакова, если бы наша совершенно точного и правильного шара, если бы ее масса всюду была одинаковой плотности и, наконец, если не было бы суточного вращения вокруг оси.

Но, так как наша Земля не является правильным шаром, не состоит во всех своих частях из пород одинаковой плотности и все время вращается, то, следовательно, сила тяжести в каждой точке земной поверхности несколько различна .

Стало быть, в каждой точке земной поверхности величина силы тяжести зависит от величины центробежной силы, уменьшающей силу притяжения, от плотности земных пород и расстояния от центра Земли . Чем больше это расстояние, тем меньше сила тяжести. Радиусы Земли, которые одним своим концом как бы упираются в земной экватор, – самые большие. Радиусы, имеющие своим концом точку Северного или Южного полюса, – наименьшие. Поэтому все тела на экваторе имеют меньшую тяжесть (меньший вес), чем на полюсе.

Известно, что на полюсе сила тяжести больше, чем на экваторе, на 1/289 долю .

Эту разность тяжести одних и тех же тел на экваторе и на полюсе можно узнать при их взвешивании с помощью пружинных весов. Если же мы будем взвешивать тела на весах с гирями, то этой разности мы не заметим. Весы будут показывать один и тот же вес, как на полюсе, так и на экваторе; гири, как и тела, которые взвешиваются, тоже, конечно, изменятся в весе.


Допустим, что корабль с грузом весит в заполярных областях, вблизи полюса, около 289 тысяч тонн. По приходе в порты вблизи экватора корабль с грузом будет весить уже только около 288 тысяч тонн. Таким образом, на экваторе корабль потерял в весе около тысячи тонн.

Все тела держатся на земной поверхности только благодаря тому, что на них действует сила тяжести. Утром, вставая с кровати, вы в состоянии спустить ноги на пол только потому, что эта сила тянет их вниз.

Сила тяжести внутри Земли

Посмотрим, как изменяется сила тяжести внутри Земли . С углублением внутрь Земли сила тяжести непрерывно увеличивается вплоть до некоторой глубины. На глубине около тысячи километров сила тяжести будет иметь максимальное (наибольшее) значение и увеличится по сравнению с ее средней величиной на земной поверхности (9,81 м/сек) приблизительно на пять процентов. При дальнейшем углублении сила тяжести станет непрерывно уменьшаться и в центре Земли будет равна нулю.

Предположения относительно вращения Земли

Наша Земля вращаясь делает полный оборот вокруг своей оси в 24 часа. Центробежная сила, как известно, возрастает пропорционально квадрату угловой скорости.

Следовательно, если Земля ускорит свое вращение вокруг оси в 17 раз, то центробежная сила увеличится в 17 раз в квадрате, т. е. в 289 раз. В обычных условиях, как уже сказано выше, центробежная сила на экваторе составляет 1/289 долю силы притяжения. При увеличении в 17 раз сила притяжения и центробежная сила делаются равными. Сила тяжести – равнодействующая этих двух сил – при подобном увеличении скорости осевого вращения Земли будет равна нулю.


Эта скорость вращения Земли вокруг оси называется критической, так как при такой скорости вращения нашей планеты все тела на экваторе потеряли бы свою тяжесть. Продолжительность суток в этом критическом случае будет составлять приблизительно 1 час 25 минут. При дальнейшем ускорении вращения Земли все тела (прежде всего на экваторе) сначала потеряют свою весомость, а затем будут отброшены центробежной силой в пространство, а сама Земля этой же силой будет разорвана на части.

Заключение наше было бы правильным, если бы Земля представляла собой абсолютно твердое тело и при ускорении своего вращательного движения не изменила бы своей формы, другими словами, если бы радиус земного экватора сохранил свою величину. Но известно, что при ускорении вращения Земли поверхность ее должна будет претерпеть некоторую деформацию: она станет сжиматься в направлении полюсов и расширяться в направлении экватора; она будет принимать все более и более приплюснутый вид. Длина радиуса земного экватора при этом начнет возрастать и этим увеличивать центробежную силу.

Таким образом, тела на экваторе потеряют свою тяжесть раньше, чем скорость вращения Земли увеличится в 17 раз, и катастрофа с Землей наступит раньше, чем сутки сократят свою продолжительность до 1 часа 25 минут. Иначе говоря, критическая скорость вращения Земли будет несколько меньше, а предельная длина суток несколько больше.

Представьте себе мысленно, что скорость вращения Земли вследствие каких-то неизвестных причин приблизится к критической. Что тогда станет с земными обитателями?

Прежде всего, всюду на Земле сутки будут составлять, например, около двух-трех часов. День и ночь будут сменяться калейдоскопически быстро. Солнце, как в планетарии, очень быстро будет перемещаться по небу, и едва вы успеете проснуться и умыться, как оно уже скроется за горизонтом, и на смену ему наступит ночь. Люди перестанут точно ориентироваться во времени. Никто не будет знать, которое сейчас число месяца и какой день недели. Нормальная человеческая жизнь будет дезорганизована.

Маятниковые часы замедлят свой ход, а затем всюду остановятся. Они ведь ходят потому, что на них действует сила тяжести. Ведь и в нашем быту, когда «ходики» начинают отставать или спешить, то необходимо укорачивать или удлинять их маятник, а то еще и подвешивать к маятнику какой-нибудь дополнительный груз.

Тела на экваторе будут терять свою весомость. В этих воображаемых условиях легко можно будет поднимать очень тяжелые тела. Не составит особого труда взвалить на плечи лошадь, слона или поднять даже целый дом. Птицы потеряют возможность приземляться. Вот кружится над корытом с водой стая воробьев. Они громко чирикают, но не в состоянии спуститься. Брошенная им горсть зерна повисла бы над Землей отдельными зернинками.

Пусть, далее, скорость вращения Земли все более и более приближается к критической. Наша планета сильно деформируется и принимает все более приплюснутый вид. Она уподобляется быстро вращающейся карусели и грозит вот-вот сбросить с себя своих обитателей.

Реки тогда перестанут течь. Они будут представлять собой длинные стоячие болота. Громадные океанские корабли будут еле касаться своими днищами водной глади, подводные лодки не в состоянии будут погрузиться в глубины моря, рыбы и морские животные будут плавать по поверхности морей и океанов, они уже не смогут скрыться в морской пучине. Моряки уже не смогут бросить якорь, они перестанут владеть рулями своих судов, большие и малые корабли будут стоять неподвижно.

Вот еще одна воображаемая картина.

Пассажирский железнодорожный поезд стоит у вокзала. Свисток уже дан; поезд должен отойти. Машинист принял все зависящие от него меры. Кочегар щедро бросает в топку уголь. Крупные искры летят из трубы паровоза. Колеса отчаянно вертятся. Но паровоз стоит неподвижно. Его колеса не касаются рельс, и нет трения между ними. Настанет момент, когда люди не будут иметь возможности спуститься на пол; они прилипнут, как мухи, к потолку.

Пусть скорость вращения Земли все увеличивается. Центробежная сила все более превосходит по своей величине силу притяжения… Тогда люди, животные, предметы домашнего обихода, дома, все находящиеся на Земле предметы, весь животный ее мир будут отброшены в мировое пространство.

От Земли отделится Австралийский материк и колоссальной черной тучей повиснет в пространстве. В глубь безмолвной бездны, прочь от Земли, полетит Африка. В громадное количество сферических капель превратятся воды Индийского океана и тоже полетят в беспредельные дали. Средиземное море, не успев еще превратиться в гигантские скопления капель, всей своей толщей воды отделится от днища, по которому свободно можно будет пройти от Неаполя до Алжира.

Наконец, скорость вращения настолько увеличится, центробежная сила настолько возрастет, что вся Земля разорвется на части.

Однако и этого случиться не может. Скорость вращения Земли, как мы уже говорили выше, не возрастает, а наоборот, даже немного убывает, – правда, настолько мало, что, как мы уже знаем, за 50 тысяч лет продолжительность суток увеличивается всего только на одну секунду. Иначе говоря, Земля теперь вращается с такой скоростью, которая необходима, чтобы под теплотворными, живительными лучами Солнца многие тысячелетия процветал животный и растительный мир нашей планеты.

Значение трения

Посмотрим теперь, какое значение имеет трение и что было бы, если бы оно отсутствовало. Трение, как известно, вредно отражается на нашей одежде: у пальто раньше всего изнашиваются рукава, а у ботинок подошвы, так как рукава и подошвы больше всего подвержены действию трения. Но вообразите себе на минуту, что поверхность нашей планеты была как бы хорошо отполированная, совершенно гладкая, и возможность трения была бы исключена. Могли ли бы мы ходить по такой поверхности? Конечно, нет.

Всем известно, что даже по льду и по натертому полу идти очень трудно и приходится остерегаться, чтобы не упасть. А ведь поверхность льда и натертого пола все же обладает некоторым трением.


Если бы на поверхности Земли исчезла сила трения, то на нашей планете вечно царил бы неописуемый хаос. Если не будет никакого трения, то будет вечно бушевать море и никогда не утихнет буря. Песчаные смерчи не перестанут висеть над Землей, и постоянно будет дуть ветер. Мелодичные звуки рояля, скрипки и страшный рев хищных зверей смешаются и без конца будут распространяться в воздухе.

Похожие публикации