Главные проводящие пути спинного мозга. Нервная система. Мозг и нервы

1. Нервы идут от спинного мозга или от головного мозга к каждой части тела. Затем они идут из каждой части тела обратно в головной или спинной мозг. Головной и спинной мозг являются центрами этой системы нервов.
2. Все части тела связаны нервами. Нервные клетки с их волокнами составляют нервную систему. Когда мы изучаем одну нервную клетку, мы видим, что у неё есть длинное волокно на одном конце и короткие волокна на другом конце. Нервные клетки посылают импульсы друг с другом с помощью волокон на их концах. Эти волокна на самом деле не прикасаются, но они расположены так близко друг к другу, что импульс может перемещаться из одного волокна в другое. Физические факторы стали стимулятором для нервных окончаний так как они передают энергию от внешних объектов на нервные окончания.
3. Таким образом, все нервные клетки соединяются друг с другом. Есть миллионы этих соединений нервных клеток. Таким образом, сигнал из любой части тела может достигать любой другой его части. В спинном и головном мозге, нервные клетки соединяются друг с другом с помощью их соединительных волокон. За пределами спинного и головного мозга, некоторые длинные волокна сгруппированы и формируют нерв. Каждый нерв состоит из тысяч нервных волокон связанных вместе в одной связке, так же как кабель состоит из отдельных проводов.

Мозговой центр нервной системы

4. Мы знаем, что нервы проводят импульсы к мозгу. Мы знаем, что мозг посылает эти импульсы вдоль так, чтобы они попадали в нужное место. Мозг состоит из трех частей. Головной мозг сидит, как шапка на мозжечке. И продолговатый мозг является длинной частью соединения головного мозга со спинным мозгом. Головной мозг имеет некоторые части, которые делают определенную работу. Изучение человека с случайными повреждениями мозга помогло ученым получить информацию об этих областях. Например, они обнаружили, что область которая отвечает за мысли, память и чувства находится в передней части головного мозга. Область которая отвечает за слух находится со стороны головного мозга, а область которая отвечает за зрение - в задней части головного мозга.
5. Многочисленные эксперименты показали, что мозг является центром чувств и понимания. Нервные клетки в головном мозге можно «усыпить» с помощью эфира или других обезболивающих средств. Тогда мозг не чувствует импульсы со стороны, где выполняется действие. Иногда нервные клетки в определенной части нашего тела можна приглушить новокаином, к примеру когда стоматолог вырывает зуб. Что делает новокаин - предотвращает попадание импульсов от нерва в зубе в головной мозг.
6. Мозжечок является центром который отвечает за работу мышц тела. Продолговатый мозг является центром некоторых из наших наиболее важных действий: дыхание и сердцебиение, от которых зависит жизнь человека. Продолговатый мозг также способен контролировать такие действия, как глотание и зевание.

Чтобы контролировать работу всего организма или каждого отдельного органа, моторного аппарата, требуются проводящие пути спинного мозга. Их основной задачей является доставка импульсов, посылаемых человеческим «компьютером» к телу, конечностям. Любой сбой в процессе отправки или принятия импульсов рефлекторной или симпатической природы чреват серьезнейшими патологиями здоровья и всей жизнедеятельности.

Что такое проводящие пути в спинном и головном мозге?

Проводящие пути головного и спинного мозга выступают в роли комплекса нейронных структур. В ходе их работы реализуется посыл импульсных толчков в конкретные области серого вещества. По сути, импульсы представляют собой сигналы, побуждающие тело к действию по призыву мозга. Несколько групп различных в соответствии с функциональными особенностями, представляют собой проводящие пути спинного мозга. К ним относят:

  • проекционные нервные окончания;
  • ассоциативные пути;
  • комиссуральные связующие корешки.

Кроме того, работоспособность спинномозговых проводников обуславливает необходимость выделения следующей классификации, согласно которой они могут быть:

  • моторными;
  • сенсорными.

Чувствительное восприятие и двигательная активность человека

Сенсорные или чувствительные проводящие пути спинного и головного мозга служат незаменимым элементом контакта между этими двумя сложнейшими системами в организме. Они же отправляют импульсивный посыл каждому органу, мышечным волокнам, рукам и ногам. Мгновенный посыл импульсного сигнала - основополагающий момент в осуществлении человеком скоординированных согласованных движений тела, выполняемых без приложения каких-либо осознанных усилий. Импульсы, посылаемые мозгом, нервные волокна могут распознавать через осязание, чувство боли, температурный режим тела, суставно-мышечную моторику.

Двигательные проводящие пути спинного головного мозга предопределяют качество рефлекторной реакции человека. Обеспечивая посыл импульсных сигналов от головы к рефлекторным окончаниям хребта и мышечному аппарату, они наделяют человека способностью самоконтроля моторики - координации. Также на этих проводящих путях лежит ответственность за передачу побуждающих толчков в сторону зрительных и слуховых органов.

Где находятся проводящие пути?

Ознакомившись с анатомическими отличительными чертами спинного мозга, необходимо разобраться с тем, где те самые проводящие пути спинного мозга располагаются, ведь под данным термином предполагается множество нервных материй и волокон. Размещаются они в специфических жизненно необходимых веществах: сером и белом. Соединяя между собой спинномозговые рога и кору левого и правого полушарий, проводящие пути посредством нейронной связи обеспечивают контакт между двумя данными отделами.

Функции проводников главнейших человеческих органов заключаются в реализации предназначенных задач с помощью конкретных отделов. В частности, проводящие пути спинного мозга находятся в пределах верхних позвонков и головы, более подробно описать это можно таким образом:

  1. Ассоциативные связи - своеобразные «мосты», которые связывают области между корой полушарий и ядрами спинномозгового вещества. В их структуре встречаются волокна различных размеров. Относительно короткие не выходят за пределы полушария или его мозговой доли. Более длинные нейроны передают импульсы, проходящие через некоторое расстояние к серому веществу.
  2. Комиссуральные пути представляют собой тело, обладающее мозолистой структурой и выполняющее задачу соединения новообразованных отделов в голове и спинном мозге. Волокна от главной доли распускаются лучеобразно, помещаются они в белой спинномозговой субстанции.
  3. Проекционные нервные волокна находятся непосредственно в спинном мозге. Их работоспособность дает возможность импульсам в сжатые сроки возникать в полушариях и налаживать связь с внутренними органами. Разделение на восходящие и нисходящие проводящие пути спинного мозга касается именно волокон данного типа.

Система восходящих и нисходящих проводников

Восходящие проводящие пути спинного мозга восполняют потребность человека в зрении, слухе, моторных функциях и их контакте с важными системами организма. Рецепторы данных связей находятся в пространстве между гипоталамусом и первыми сегментами позвоночного столба. Восходящие пути спинного мозга способны принять и отправить далее импульсный толчок, поступающий с поверхности верхних слоев эпидермиса и слизистых оболочек, органов жизнеобеспечения.

В свою очередь, нисходящие проводящие пути спинного мозга включают в свою систему следующие элементы:

  • Нейрон пирамидный (берет свое начало в коре полушарий, затем устремляется вниз, минуя мозговой ствол; каждый его пучок располагается на спинномозговых рогах).
  • Нейрон центральный (является моторным, связывающим передние рога и кору полушарий с рефлекторными корешками; вместе с аксонами в цепочку входят и элементы периферической нервной системы).
  • Волокна спиномозжечковые (проводники нижних конечностей и столба спинного мозга, включая клиновидные и тонкие связки).

Обычному человеку, не специализирующемуся в области нейрохирургии, достаточно сложно разобраться в системе, которую представляют сложные проводящие пути спинного мозга. Анатомия этого отдела действительно является запутанной структурой, состоящей из нейронных импульсных передач. Но именно благодаря ей организм человека существует как единое целое. За счет двойного направления, по которому действуют проводящие пути спинного мозга, обеспечивается моментальная передача импульсов, которые несут в себе информацию от управляемых органов.

Проводники глубокой сенсорики

Структура нервных связок, действующая в восходящем направлении, является многосоставной. Данные проводящие пути спинного мозга образованы несколькими элементами:

  • пучок Бурдаха и пучок Голля (представляют собой пути глубокой чувствительности, расположенные с задней стороны позвоночного столба);
  • спиноталамический пучок (находится сбоку спинномозгового столба);
  • пучок Говерса и пучок Флексига (мозжечковые пути, расположенные по бокам столба).

Внутри межпозвоночных узлов расположены глубокой степени чувствительности. Отростки, локализованные на периферических участках, завершаются в наиболее подходящих мышечных тканях, сухожилиях, костно-хрящевых волокнах и их рецепторах.

В свою очередь, центровые отростки клеток, располагаясь позади, держат направление к спинному мозгу. Проводя глубокую чувствительность, задние нервные корешки не углубляются в серое вещество, образуя лишь задние спинномозговые столбы.

Там, где подобные волокна входят в спинной мозг, происходит их разделение на короткие и длинные. Далее проводящие пути спинного и головного мозга отправляются к полушариям, где происходит их кардинальное перераспределение. Основная их часть остается в зонах передних и задних центральных извилин, а также в области темени.

Отсюда следует, что данные пути проводят чувствительность, благодаря которой человек может ощутить, как работает его мышечно-суставный аппарат, почувствовать любое вибрационное движение или тактильное прикосновение. Пучок Голля, находящийся прямо по центру спинного мозга, распределяет чувствительность от нижнего отдела туловища. Пучок Бурдаха расположен выше и служит проводником чувствительности верхних конечностей и соответствующего отдела туловища.

Как узнать о степени сенсорики?

Определить степень глубокой чувствительности можно с помощью нескольких простых тестов. Для их выполнения больному закрывают глаза. Его задачей является определение конкретного направления, в котором врач или исследователь делает движения пассивного характера в суставах пальцев, рук или ног. Желательно также описать подробно позу тела или положение, которое приняли его конечности.

При помощи камертона на предмет вибрационной чувствительности можно исследовать проводящие пути спинного мозга. Функции этого прибора помогут точно определить время, на протяжении которого пациент четко ощущает вибрирование. Для этого берут прибор и нажимают на него, чтобы появился звук. В этот момент необходимо выставить на любой костный выступ на теле. В случае когда такая чувствительность выпадает раньше, чем в других случаях, можно предположить, что поражены задние столбы.

Тест на чувство локализации подразумевает, что больной, закрыв глаза, точно указывает на место, в котором за несколько секунд перед этим к нему прикоснулся исследователь. Удовлетворительным показатель считается тогда, если пациентом допущена погрешность в рамках одного сантиметра.

Сенсорная восприимчивость кожных покровов

Строение проводящих путей спинного мозга позволяет на периферическом уровне определить степень кожной чувствительности. Дело в том, что нервные отростки протонейрона участвуют в кожных рецепторах. Отростки, расположенные по центру в составе задних отростков, устремляются прямо к спинному мозгу, вследствие чего там образуется зона Лисауэра.

Так же, как и путь глубокой чувствительности, кожный складывается из нескольких последовательно объединенных нервных клеток. В сравнении со спиноталамическим пучком нервных волокон информационные импульсы, передаваемые от нижних конечностей или нижнего отдела туловища, находятся немного выше и посередине.

Кожная чувствительность различается по критериям, исходя из природы раздражителя. Она бывает:

  • температурной;
  • тепловой;
  • болевой;
  • тактильной.

При этом последний вид кожной чувствительности, как правило, передается проводниками глубокой чувствительности.

Как узнать о болевом пороге и различии температуры?

Чтобы определить уровень болевых ощущений, врачи применяют метод укалывания. В самых неожиданных местах для пациента врач наносит несколько легких уколов с помощью булавки. Глаза больного должны быть закрыты, т.к. видеть, что происходит, он не должен.

Порог температурной чувствительности определить несложно. При нормальном состоянии человек испытывает различные ощущения при температурах, разница которых составляла порядка 1-2°. Для выявления патологического дефекта в виде нарушения кожной чувствительности врачи используют специальный аппарат - термоэстезиометр. Если же его нет, можно провести тест на теплую и горячую воду.

Патологии, связанные с нарушением проводящих путей

В восходящем направлении проводящие пути спинного мозга образованы в таком положении, благодаря которому человек может ощущать тактильные прикосновения. Для исследования необходимо взять что-то мягкое, нежное и в ритмичном порядке провести тонкое обследование на выявление степени чувствительности, а также проверку реакции волосков, щетинок и т.д.

Расстройствами, вызванными кожной чувствительностью, на сегодняшний день считают такие:

  1. Анестезия - полная утрата чувствительности кожи на конкретной поверхностной области тела. При нарушении болевой чувствительности возникает анальгезия, при температурной - терманестезия.
  2. Гиперестезия - обратное анестезии явление, возникающее при понижении порога возбуждения, при его повышении появляется гипальгезия.
  3. Неправильное восприятие раздражающих факторов (например, пациент путает холодное и теплое) называется дизестезией.
  4. Парестезия - это нарушение, проявлений которого может быть огромное множество, начиная от ползающих мурашек, чувства от удара током и его прохождения через весь организм.
  5. Гиперпатия имеет самую яркую выраженность. Ей свойственно также поражение зрительного бугра, повышение порога возбудимости, невозможность локально определить раздражитель, тяжелая психоэмоциональная окраска всего происходящего и слишком резкая двигательная реакция.

Особенности структуры нисходящих проводников

Нисходящие проводящие пути головного и спинного мозга включают в себя несколько связок, среди которых:

  • пирамидная;
  • рубро-спинальная;
  • вестибуло-спинальная;
  • ретикуло-спинальная;
  • задняя продольная.

Все вышеуказанные элементы - двигательные проводящие пути спинного мозга, которые являются составляющими нервных связок в нисходящем направлении.

Так называемый начинается от огромнейших одноименных клеток, находящихся в верхнем слое полушария мозга, в основном в зоне центральной извилины. Здесь же расположен проводящий путь переднего канатика спинного мозга - этот важный элемент системы направлен вниз и проходит через несколько отделов задней бедренной капсулы. В точке пересечения продолговатого и спинного мозга можно обнаружить неполный перекрест, образующий прямой пирамидный пучок.

В покрышке среднего мозга присутствует проводящий рубро-спинальный путь. Начало он берет от красных ядер. При выходе его волокна перекрещиваются и проходят в спинной мозг через варолиев и продолговатый мозг. Рубро-спинальный путь позволяет проводить импульсы от мозжечка и подкорковых узлов.

Проводящие пути спинного мозга начинаются в ядре Дейтерса. Располагаясь в стволе мозга, вестибуло-спинальный путь продолжается в спинном и оканчивается в его передних рогах. От этого проводника зависит прохождение импульсов от вестибулярного аппарата к периферической системы.

В клетках сетчатой формации заднего мозга начинается ретикуло-спинальный путь, который в белом веществе спинного мозга рассеян отдельными пучками преимущественно сбоку и спереди. По сути, это главный связующий элемент между рефлекторным мозговым центром и опорно-двигательным аппаратом.

Задняя продольная связка также участвует в соединении двигательных структур со стволом головного мозга. От нее зависит работа глазодвигательных ядер и вестибулярного аппарата в целом. Задний продольный пучок находится в шейном отделе позвоночника.

Последствия заболеваний спинного мозга

Таким образом, проводящие пути спинного мозга являются жизненно важными соединительными элементами, предоставляющими человеку возможность движения и чувствительности. Нейрофизиология данных путей связана с особенностями строения позвоночника. Известно, что структура спинного мозга, окруженного мышечными волокнами, имеет цилиндрическую форму. Внутри веществ спинного мозгового ствола ассоциативные и двигательные рефлекторные пути контролируют функциональность всех систем организма.

При возникновении заболевания спинного мозга, механического повреждения или пороков развития проводимость между двумя основными центрами может существенно снизиться. Нарушения проводящих путей угрожают человеку полным прекращением двигательной активности и потерей сенсорного восприятия.

Основной причиной отсутствия импульсной проводимости является отмирание нервных окончаний. Самая сложная степень нарушения проводимости между головным и спинным мозгом заключается в парализации и отсутствиия чувствительности в конечностях. Затем могут наблюдаться проблемы в работе внутренних органов, связанных с мозгом поврежденной нейронной связкой. Например, нарушения в нижнем отделе спинномозгового ствола несут за собой неконтролируемое человеком мочеиспускание и процессы дефекации.

Лечат ли болезни спинного мозга и проводящих путей?

Только появившиеся дегенеративные изменения практически моментально отражаются на проводниковой деятельности спинного мозга. Угнетение рефлексов ведет к явно выраженным патологическим переменам, обусловленным гибелью нейронных волокон. Полностью восстановить нарушенные участки проводимости невозможно. Заболевание наступает стремительно и прогрессирует молниеносно, поэтому избежать грубых нарушений проводимости можно только в том случае, если своевременно начать медикаментозное лечение. Чем раньше это будет сделано, тем больше появится шансов на прекращение патологического развития.

Непроводимость проходящих путей спинного мозга нуждается в лечении, первоочередной задачей которого станет остановка процессов отмирания нервных окончаний. Добиться этого можно только в случае пресечения факторов, повлиявших на возникновение заболевания. Только после этого можно приступать к терапии с целью максимально возможного восстановления чувствительности и двигательных функций.

Лечение медикаментами направлено на прекращение процесса отмирания мозговых клеток. Их задачей является также восстановление нарушенной кровоподачи к поврежденному участку спинного мозга. В ходе лечения врачи учитывают возрастные особенности, характер и степень тяжести повреждения и прогрессирования болезни. В терапии проводящих путей важно поддерживать постоянную стимуляцию нервных волокон с помощью электрических импульсов. Это позволит сохранить удовлетворительный мышечный тонус.

Хирургическое вмешательство проводят с целью восстановления проводимости спиного мозга, поэтому проводят его по двум направлениям:

  1. Пресечение причин парализации деятельности нейронных связей.
  2. Стимулирование спинномозгового ствола для скорейшего приобретения утраченных функций.

Предшествовать операции должно полное медицинское обследование всего организма. Это позволит определить локализацию процессов дегенерации нервных волокон. В случае тяжелейших травм позвоночника необходимо сначала устранить причины компрессии.

Спинной мозг человека является важнейшим органом центральной нервной системы, осуществляющий связь всех органов с ЦНС и проводящий рефлексы. Он покрыт сверху тремя оболочками:

  • твердой , паутинной и мягкой

Между паутинной и мягкой (сосудистой) оболочкой и в центральном его канале находится спинномозговая жидкость (ликвор )

В эпидуральном пространстве (промежуток между твердой мозговой оболочкой и поверхностью позвоночника) — сосуды и жировая ткань

Строение и функции спинного мозга человека

Что представляет из себя спинной мозг по внешнему строению?

Это — длинный шнур в позвоночном канале, в виде тяжа цилиндрической формы, длиной примерно 45 мм, шириной около 1 см, более плоский спереди и сзади, чем по бокам. Он имеет условную верхнюю и нижнюю границы. Верхняя начинается между линией большого затылочного отверстия и первым шейным позвонком: в этом месте спинной мозг соединяется с головным посредством промежуточного продолговатого. Нижняя — на уровне 1 -2 поясничных позвонков, после которых шнур принимает конический вид и далее «вырождается» в тонкую спинномозговую нить (терминальную ) с диаметром около 1 мм, которая тянется до второго позвонка копчикового отдела. Терминальная нить состоит из двух частей — внутренней и наружной:

  • внутренняя — длиной примерно 15 см, состоит из нервной ткани, переплетена поясничными и крестцовыми нервами и находится в мешочке из твердой мозговой оболочки
  • наружная — около 8 см, начинается ниже 2-го позвонка крестцового отдела и тянется в виде соединения твердой, паутинной и мягкой оболочек до 2-го копчикового позвонка и сращивается с надкостницей

Наружная, свисающая до самого копчика терминальная нить с переплетающими ее нервными волокнами очень напоминает по виду конский хвост. Поэтому боли и явления, возникающие при защемлении нервов ниже 2-го крестцового позвонка, часто называют синдромом конского хвоста .

Спинной мозг имеет утолщения в шейном и пояснично-крестцовом отделах. Это находит свое объяснение в наличии большого количества выходящих нервов в этих местах, идущих к верхним, а также к нижним конечностям:

  1. Шейное утолщение распространено на протяженности от 3-го — 4-го шейного позвонков до 2-го грудного, достигая максимума в 5-м — 6-м
  2. Пояснично-крестцовое — от уровня 9-го — 10-го грудного позвонков до 1-го поясничного с максимумом в 12-м грудном

Серое и белое вещество спинного мозга

Если рассмотреть строение спинного мозга в поперечном разрезе, то в центре его можно увидеть серый участок в виде раскрывшей свои крылья бабочки. Это — серое вещество спинного мозга. Оно окружено снаружи белым веществом. Клеточное строение серого и белого вещества отличается между собой, как и их функции.


Серое вещество спинного мозга состоит из двигательных и вставочных нейронов :

  • двигательные нейроны передают двигательные рефлексы
  • вставочные — обеспечивают связь между самими нейронами

Белое вещество состоит из так называемых аксонов — нервных отростков, из которых создаются волокна нисходящих и восходящих проводящих путей.

Крылья «бабочки» более узкие образуют передние рога серого вещества, более широкие — задние . В передних рогах находятся двигательные нейроны , в задних — вставочные . Между симметричными боковыми частями имеется поперечная перемычка из мозговой ткани, в центре которой проходит канал, сообщающийся верхней частью с желудочком мозга и заполненный спинномозговой жидкостью. В некоторых отделах или даже по всей протяженности у взрослых людей центральный канал может зарастать.

Относительно этого канала, слева и справа от него, серое вещество спинного мозга выглядит как столбы симметричной формы, соединенные между собой передними и задними спайками:

  • передние и задние столбы соответствуют передним и задним рогам на поперечном срезе
  • боковые выступы образуют боковой столб

Боковые выступы есть не на всей протяженности, а только между 8-м шейным и 2-м поясничным сегментами. Поэтому поперечный срез в сегментах, где отсутствуют боковые выступы, имеет овальную либо круглую форму.

Соединение симметричных столбов в передней и задней частях образует на поверхности мозга две борозды: переднюю, более глубокую, и заднюю. Передняя щель заканчивается перегородкой, примыкающей к задней границе серого вещества.

Спинномозговые нервы и сегменты

Слева и вправо от этих центральных борозд расположены соответственно переднелатеральные и заднелатеральные борозды, через которые выходят передние и задние нити (аксоны ), образующие нервные корешки. Передний корешок по своему строению представляет из себя двигательные нейроны переднего рога. Задний, отвечающий за чувствительность, состоит из вставочных нейронов заднего рога. Сразу на выходе из мозгового сегмента и передний и задний корешок объединяются в один нерв или нервный узел (ганглий ). Так как всего в каждом сегменте имеется два передних и два задних корешках, в сумме они образуют два спинномозговых нерва (по одному с каждой стороны). Теперь нетрудно подсчитать, сколько всего нервов имеет спинной мозг человека.

Для этого рассмотрим его сегментарное строение. Всего имеется 31 сегмент:

  • 8 — в шейном отделе
  • 12 — в грудном
  • 5 — поясничном
  • 5 — в крестцовом
  • 1 — в копчиковом

Значит спинной мозг имеет всего 62 нерва — по 31 с каждой стороны.

Отделы и сегменты спинного мозга и позвоночника находятся не на одном уровне, из-за разницы в длине (спинной мозг короче позвоночника). Это надо учитывать при сопоставлении мозгового сегмента и номера позвонка при проведении рентгенологии и томографии: если в начале шейного отдела этот уровень соответствует номеру позвонка, а в нижней его части лежит на позвонок выше, то в крестцовом и копчиковом отделе эта разница составляет уже несколько позвонков.

Две важных функции спинного мозга

Спинной мозг выполняет две важные функции — рефлекторную и проводниковую . Каждый его сегмент связан с конкретными органами, обеспечивая их функциональность. Например:

  • Шейный и грудной отдел — связывается с головой, руками, органами грудной клетки, мышцы груди
  • Поясничный отдел — органы ЖКТ, почки, мышечная система туловища
  • Крестцовый отдел — органы таза, ноги

Рефлекторные функции — это простые, заложенные природой рефлексы. Например:

  • болевая реакция — отдернуть руку, если больно.
  • коленный рефлекс

Рефлексы могут осуществляться без участия головного мозга

Это доказывается простыми опытами на животных. Биологи проводили эксперименты с лягушками, проверяя, как они реагируют на боль при отсутствии головы: была отмечена реакция как на слабые, так и на сильные болевые раздражители.

Проводниковые функции спинного мозга заключаются в проведении импульса по восходящему пути в головной мозг, а оттуда — по нисходящему пути в виде обратной команды какому-то органу

Благодаря этой проводниковой связи, осуществляется любое мысленное действие:
встать, пойти, взять, бросить, поднять, побежать, отрезать, нарисовать — и многие другие, которые человек, не замечая, совершает в своей повседневной жизни в быту и на работе.

Такая уникальная связь между центральным мозгом, спинным, всей ЦНС и всеми органами организма и его конечностям, как и прежде остается мечтой робототехники. Ни один, даже самый современный робот пока не способен осуществить и тысячной доли тех всевозможных движений и действий, которые подвластны биоорганизму. Как правило, такие роботы запрограммированы для узко специализированной деятельности и в основном используются на конвейерных автоматических производствах.

Функции серого и белого вещества. Чтобы понять, как осуществляются эти великолепные функции спинного мозга, рассмотрим строение серого и белого вещества мозга на клеточном уровне.

Серое вещество спинного мозга в передних рогах содержат нервные клетки больших размеров, которые называются эфферентными (двигательными) и объединяются в пять ядер:

  • центральное
  • переднелатеральное
  • заднелатеральное
  • переднемедиальное и заднемедиальное

Чувствительные корешки мелких клеток задних рогов представляют собой специфические клеточные отростки из чувствительных узлов спинного мозга. В задних рогах строение серого вещества неоднородно. Большая часть клеток образуют собственные ядра (центральное и грудное). К пограничной зоне белого вещества, расположенного возле задних рогов, примыкают губчатая и студенистая зоны серого вещества, отростки клеток которых, вместе с отростками мелких диффузно рассеянных клеток задних рогов, образуют синапсы (контакты) с нейронами передних рогов и между соседними сегментами. Эти нейриты получили название передних, боковых и задних собственных пучков. Связь их с головным мозгом осуществляется при помощи проводниковых путей белого вещества. По краю рогов эти пучки образуют белую каемку.

Боковые рога серого вещества выполняет следующие важные функции:

  • В промежуточной зоне серого вещества (боковых рогах) находятся симпатические клетки вегетативной нервной системы, именно посредством их осуществляется связь с внутренними органами. Отростки этих клеток соединяются с передними корешками
  • Здесь образуется спиномозжечковый путь:
    На уровне шейных и верхних грудных сегментов находится ретикулярная зона — пучок из большого количества нервов, связанных с зонами активации коры головного мозга и рефлекторной деятельности.


Сегментарная деятельность серого вещества мозга, задних и передних корешков нервов, собственных пучков белого вещества, окаймляющих серое, называется рефлекторной функцией спинного мозга. Сами же рефлексы называются безусловными , по определению академика Павлова.

Проводниковые функции белого вещества осуществляются посредством трех канатиков — наружными его участками, ограниченными бороздами:

  • Передний канатик — участок между передними срединной и латеральной бороздами
  • Задний канатик — между задними срединной и латеральной бороздами
  • Боковой канатик — между переднелатеральной и заднелатеральной бороздами

Аксоны белого вещества образуют три системы проводимости:

  • короткие пучки, называемые ассоциативными волокнами, которые связывают различные сегменты спинного мозга
  • восходящие чувствительные (афферентные ) пучки, направленные к отделам головного мозга
  • нисходящие двигательные (эфферентные ) пучки, направленные из мозга к нейронам серого вещества передних рогов

Восходящие и нисходящие пути проводимости. Рассмотрим для примера некоторые функции путей канатиков белого вещества:

Передние канатики:

  • Передний пирамидный (корково-спинномозговой) путь — передача двигательных импульсов от коры головного мозга к спинномозговому (передним рогам)
  • Спиноталамический передний путь — передача импульсов осязания воздействия на поверхность кожи (тактильная чувствительность)
  • Покрышечно-спинномозговой путь -связывая зрительные центры под корой головного мозга с ядрами передних рогов, создает защитный рефлекс, вызванный звуковыми или зрительными раздражителями
  • Пучок Гельда и Левенталя (преддверно-спинномозговой путь) — волокна белого вещества связывают вестибулярные ядра восьми пар черепно-мозговых нервов с двигательными нейронами передних рогов
  • Продольный задний пучок — связывая верхние сегменты спинного со стволом мозга, координирует работу глазных мышц с шейными и др.

Восходящие пути боковых канатиков проводят импульсы глубокой чувствительности (ощущения своего тела) по корково-спинномозговым, спиноталамическим и покрышечно-спинномозговым путям.

Нисходящие пути боковых канатиков:

  • Латеральный корково-спинномозговой (пирамидный) — передает импульс движения от коры головного мозга к серому веществу передних рогов
  • Красноядерно-спинномозговой путь (находится впереди латерального пирамидного), сбоку к нему прилегают спинномозжечковый задний и спинноталамический боковой пути.
    Красноядерно-спинномозговой путь осуществляет автоматическое управление движениями и мышечным тонусом на подсознательном уровне.


В разных отделах спинного мозга различное соотношение серого и белого мозгового веществ. Это объясняется разным количеством восходящих и нисходящих путей. В нижних спинномозговых сегментах больше серого вещества. По мере продвижения вверх его становится меньше, а белое вещество наоборот прибавляется, так как добавляются новые восходящие пути, и на уровне верхних шейных сегментов и средней части грудного белого — больше всего. Но в области как шейного, так и поясничного утолщений серое вещество преобладает.

Как видите, спинной мозг имеет очень сложное строение. Связь нервных пучков и волокон уязвима, и серьезная травма или болезнь способны нарушить это строение и привести к нарушению проводящих путей, из-за чего ниже точки «обрыва» проводимости может быть полный паралич и потеря чувствительности. Поэтому при малейших опасных признаках спинной мозг надо обследовать и вовремя лечить.

Пункция спинного мозга

Для диагностики инфекционных болезней (энцефалита, менингита и др. болезней) используется пункция спинного мозга (люмбальная пункция) — ведение иглы в спинномозговой канал. Она проводится таким образом:
В субарахноидальное пространство спинного мозга на уровне ниже второго поясничного позвонка вводится игла и осуществляется забор спинномозговой жидкости (ликвора ).
Это процедура безопасна, так как ниже второго позвонка у взрослого человека спинной мозг отсутствует, а следовательно, нет угрозы его повреждения.

Однако она требует особой тщательности, чтобы не занести под оболочку спинного мозга инфекцию или эпителиальные клетки.

Пункция спинного мозга проводится не только для диагностики, но и для лечения, в таких случаях:

  • введение химиотерапевтических лекарств или антибиотиков под оболочку мозга
  • для эпидуральной анестезии при операциях
  • для лечения гидроцефалии и уменьшения внутричерепного давления (удаление избытка ликвора)

Пункция спинного мозга имеет такие противопоказания:

  • стеноз спинного канала
  • смещение (дислокация) мозга
  • обезвоживание (дегидратация)

Заботьтесь об этом важном органе, занимайтесь элементарной профилактикой:

  1. Принимайте антивирусные средства во время эпидемии вирусного менингита
  2. Старайтесь не устраивать пикники в лесопарковой зоне в мае-начале июня (период активности энцефалитного клеща)

Повреждения спинного мозга в большинстве случаев приводят к параличу ног или всей нижней части тела человека из-за того, что разрывается связь между мозгом и спинным мозгом даже при условии того, что обе упомянутых части нервной системы остаются в полностью функциональном состоянии. И недавно исследователи из Швейцарского федерального политехнического университета Лозанны (Swiss Ecole Polytechnique Federale de Lausanne, EPFL), университета Брауна (Brown University), и института Medtronic and Fraunhofer ICT-IMM, Германия, разработали систему, которая позволяет обойти поврежденные участки нервной системы, восстанавливая связь моторного участка головного мозга со спинным мозгом. При этом, вся система работает при помощи беспроводных технологий, а в качестве демонстрации вниманию общественности была представлена специально парализованная обезьяна, которая смогла передвигаться практически своей нормальной походкой.

За последние годы ученые-нейробиологи и медики добились значительных успехов в направлении восстановления подвижности конечностей у парализованных в результате травмы позвоночника людей. В одних случаях для этого были использованы имплантаты, стимулирующие местные нервные сети спинного мозга. Такая технология не требует прямого подключения к мозгу, а необходимые сигналы управления получаются за счет обработки целого ряда косвенных данных. Этот подход является самым простым, но он позволяет совершать лишь малое количество разновидностей движений, которые являются резкими и не очень точными.

Более высокое качество управления конечностями парализованных людей обеспечивают технологии, требующие прямого подключения имплантата к мозгу человека. Сигналы управления черпаются прямо из соответствующих зон мозга и используются для непосредственной стимуляции мускулов конечностей. Однако, такой подход не очень практичен, так как он требует подключения имплантата к быстродействующему компьютеру через достаточно толстый кабель, торчащий из черепа пациента.

Для решения последней из описанных выше проблем ученые разработали специальный нейросенсор, который связывается с компьютером при помощи беспроводных технологий. Компьютер обрабатывает поступающие данные, выделяет из них соответствующие образы и опять при помощи беспроводных технологий передает их устройству, подключенному прямо к спинному мозгу. Вся эта цепочка организована таким образом, что спинной мозг получает точно такие же сигналы, как и от мозга, говорящие, каким мускулам и с какой силой необходимо "сработать" в данный момент времени.

Вся система была откалибрована путем внедрения соответствующих имплантатов в нервную систему здоровых обезьян. Обработка огромного массива собранной информации позволила ученым выделить необходимые образы мозговой деятельности и соотнести их с командами управления каждым элементом мышечной системы. Затем, имея на руках готовые шаблоны и прочую необходимую информацию, ученые внедрили имплантаты в нервную систему двух макак с повреждениями верхней части позвоночника. Через некоторое время парализованные обезьяны уже могли двигать задними конечностями, а через месяц они начали ходить, передвигая ногами почти так, как они это делают естественным образом.

Несмотря на то, что исследователям удалось добиться работоспособности беспроводной системы, им предстоит проделать еще массу работы, прежде чем такая система сможет быть использована для восстановления подвижности конечностей у парализованных людей. В настоящее время система обеспечивает только одностороннюю связь и не может передавать сенсорную информацию назад, от спинного к головному мозгу. Именно реализацией обратных связей и планируют заняться ученые в ближайшем будущем.

Похожие публикации