Особенности развития центральной нервной системы. Онтогенез центральной нервной системы

Развитие центральной нервной системы и нервной регуляции функций.

Центральной нервной системе (ЦНС) принадлежит веду­щая роль в организации адаптационных процессов, протекаю­щих в ходе индивидуального развития. Поэтому динамика морфо-функциональных преобразований в этой системе ска­чивается на характере деятельности всех систем организма.

Количество нейронов ЦНС достигает максимального ко­личества у 24-недельного плода и остается постоянным до по­жилого возраста. Дифференцированные нейроны уже не спо­собны к делению, и постоянство их численности играет основ­ную роль в накоплении и хранении информации. Глиальные клетки продолжают оставаться незрелыми и после рождения, что обусловливает дефицит их защитной и опорной функций для ткани мозга, замедленные обменные процессы в мозге, его низкую электрическую активность и высокую проницаемость гемато-энцефалического барьера.

К моменту рождения мозг плода характеризуется низкой чувствительностью к гипоксии, низким уровнем обменных процессов (метаболизма) и преобладанием в этот период ана­эробного механизма получения энергии. В связи с медленным синтезом тормозных медиаторов в ЦНС плода и новорожден­ного легко возникает генерализованное возбуждение даже при небольшой силе раздражения. По мере созревания мозга активность тормозных процессов нарастает. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется преимущественно спинным мозгом. В начале плодного периода (восьмая-десятая неде­ли развития) появляется контроль продолговатого мозга над спинным. С 13-14 недели появляются признаки мезенцефального контроля нижележащих отделов ЦНС. Корригирующие влияния коры на другие структуры ЦНС, механизмы, необхо­димые для выживания после рождения, выявляются в конце плодного периода. К этому времени определяются основные типы безусловных рефлексов: ориентировочный, защитный (избегание), хватательный и пищевой. Последний, в виде со­сательных и глотательных движений, наиболее выражен.

Развитию ЦНС ребенка в значительной мере способству­ют гормоны щитовидной железы. Снижение выработки тиреоидных гормонов в фатальном или раннем постнатальном пе­риодах приводит к кретинизму в связи с уменьшением числа и размеров нейронов и их отростков, нарушением метаболизма в мозге белка и нуклеиновых кислот, а также передачи возбуж­дения в синапсах.

В сравнении со взрослыми дети имеют более высокую воз­будимость нервных клеток, меньшую специализацию нервных центров. В раннем детстве многие нервные волокна еще не имеют миелиновой оболочки, обеспечивающей изолированное проведение нервных импульсов. Вследствие этого процесс воз­буждения легко переходит с одного волокна на другие, сосед­ние. Миелинизация большинства нервных волокон у большин­ства детей заканчивается к трехлетнему возрасту, но у некото­рых продолжается до 5-7 лет. С плохой «изоляцией» нервных волокон во многом связана высокая иррадиация нервных про­цессов, а это влечет за собой несовершенство координации реф­лекторных реакций, обилие ненужных движений и неэконо­мичное вегетативное обеспечение. Процессы миелинизации нор­мально протекают под влиянием тиреоидных и стероидных гормонов. По мере развития, «созревания» нейронов и меж­нейронных связей, координация нервных процессов улучшает­ся и достигает совершенства к 18-20 годам.

Возрастные изменения функций ЦНС обусловлены и дру­гими морфологическими особенностями развития. Несмотря на то, что спинной мозг новорожденного является наиболее зрелой частью ЦНС, его окончательное развитие завершается одновременно с прекращением роста. За это время его масса увеличивается в 8 раз.

Основные части головного мозга выделяются уже к треть­ему месяцу эмбрионального периода, а к пятому месяцу эмбрио­генеза успевают сформироваться основные борозды больших полушарий. Наиболее интенсивно головной мозг человека раз­вивается в первые 2 года после рождения. Затем темпы его раз­вития немного снижаются, но продолжают оставаться высоки­ми до 6-7 лет, когда масса мозга ребенка достигает 80% массы мозга взрослого.

Головной мозг развивается гетерохронно. Быстрее всего идет созревание стволовых, подкорковых и корковых структур, регулирующих вегетативные функции организма. Эти отделы по своему развитию уже в 2-4 года похожи на мозг взрослого человека . Окончательное формирование стволовой части и промежуточного мозга завершается только в 13-16 лет. Пар­ная деятельность полушарий головного мозга в онтогенезе ме­няется от неустойчивой симметрии к неустойчивой асиммет­рии и, наконец, к устойчивой функциональной асимметрии. Клеточное строение, форма и размещение борозд и извилин проекционных зон коры приобретают сходство со взрослым мозгом к 7 годам. В лобных отделах это достигается только к 12 годам. Созревание больших полушарий полностью заверша­ется только к 20-22 годам.

В возрасте 40 лет начинаются процессы дегенерации в ЦНС. Возможна демиелинизация в задних корешках и прово­дящих путях спинного мозга. С возрастом падает скорость рас­пространения возбуждения по нервам, замедляется синаптическое проведение, снижается лабильность нервных клеток. Ослабляются тормозные процессы на разных уровнях нервной системы. Неравномерные, разнонаправленные изменения в от­дельных ядрах гипоталамуса приводят к нарушению координа­ции его функций, изменениям в характере вегетативных реф­лексов и в связи с этим к снижению надежности гомеостатического регулирования. У пожилых людей снижается реактив­ность нервной системы, ограничиваются возможности адапта­ции организма к нагрузкам, хотя у отдельных лиц и в 80 лет функциональное состояние ЦНС и уровень адаптационных процессов могут сохраняться такими же, как и в среднем зре­лом возрасте. На фоне общих изменений в вегетативной не­рвной системе наиболее заметно ослабление парасимпатиче­ских влияний.

Перинатальное поражение нервной системы - именно такой диагноз все чаще ставится новорожденным малышам. За этими словами скрывается довольно большая группа различных поражений головного и спинного мозга, возникающих при вынашивании и рождении младенца, а также в первые дни его жизни.

Периоды заболевания
В течение данного заболевания, несмотря на многообразие вызывающих его причин, принято выделять три периода: острый (1-й месяц жизни), восстановительный, который подразделяется на ранний (со 2-го по 3-й месяцы жизни) и поздний (с 4 месяцев до 1 года у доношенных, до 2 лет - у недоношенных), и исход заболевания. В каждом из этих периодов перинатальные повреждения имеют различные клинические проявления - синдромы, причем у одного ребенка может одновременно присутствовать несколько из них. Выраженность каждого синдрома и их сочетание позволяют определить тяжесть повреждения нервной системы, назначить правильное лечение и прогнозировать дальнейшее развитие заболевания.

Синдромы острого периода
К синдромам острого периода относятся коматозный, судорожный, гипертензионно-гидроцефальный синдромы, а также угнетение ЦНС и повышенная нервно-рефлекторная возбудимость.
При легких повреждениях ЦНС у новорожденных чаще всего отмечается синдром повышенной нервно-рефлекторной возбудимости, который проявляется вздрагиванием, повышением (гипертонусом) или понижением (гипотонией) мышечного тонуса, усилением рефлексов, тремором (дрожанием) подбородка и конечностей, беспокойным поверхностным сном, частым беспричинным плачем.
При поражении ЦНС средней степени тяжести в первые дни жизни возникает угнетение ЦНС в виде снижения двигательной активности и мышечного тонуса, ослабления рефлексов новорожденных, в том числе сосания и глотания. К концу 1-го месяца жизни угнетение ЦНС постепенно исчезает, а у некоторых детей сменяется повышенным возбуждением. При средней степени поражения ЦНС наблюдаются нарушения в работе внутренних органов и систем (вегетативно-висцеральный синдром). Из-за несовершенства регуляции тонуса сосудов появляется неравномерная окраска (мраморность) кожи. Кроме того, присутствуют нарушения ритма дыхания и сердечных сокращений и дисфункции желудочно-кишечного тракта в виде неустойчивого стула, запоров, частых срыгиваний, метеоризма.
Нередко у детей в остром периоде заболевания появляются признаки гипертензионно-гидроцефального синдрома, который характеризуется избыточным скоплением жидкости в пространствах головного мозга, содержащих спинномозговую жидкость, что приводит к повышению внутричерепного давления. Основными симптомами, которые могут заметить не только врачи, но и родители, являются быстрые темпы прироста окружности головы ребенка (более 1 см за неделю), значительный размер и выбухание большого родничка, расхождение черепных швов, беспокойство, частые срыгивания, необычные движения глаз (нистагм).
Резкое угнетение деятельности ЦНС и других органов и систем присуще крайне тяжелому состоянию новорожденного с развитием коматозного синдрома (отсутствия сознания и координирующей функции головного мозга). Такое состояние требует неотложной помощи в условиях реанимации.

Синдромы восстановительного периода
В восстановительном периоде родителей должны насторожить бедность мимики, позднее появление улыбки, сниженный интерес к игрушкам и предметам окружающей среды, а также слабый монотонный крик, задержка появления гуления и лепета. Возможно, все это является следствием поражений ЦНС, при которых, наряду с прочими, возникают синдромы двигательных нарушений и задержки психомоторного развития.

Исходы заболевания
К годовалому возрасту у большинства детей проявления перинатальных поражений ЦНС постепенно исчезают. К частым последствиям перинатальных поражений относят:
. задержку психического, моторного или речевого развития;
. цереброастенический синдром (перепады настроения, двигательное беспокойство, тревожный сон, метеозависимость);
. синдром гиперактивности с дефицитом внимания: агрессивность, импульсивность, трудности концентрации и поддержания внимания, нарушения обучения и памяти.
Наиболее неблагоприятными исходами являются эпилепсия, гидроцефалия, детский церебральный паралич, свидетельствующие о тяжелых перинатальных повреждениях ЦНС.

Причины нарушения в работе ЦНС
Специалисты выделяют четыре группы перинатальных поражений ЦНС:
1) гипоксические, при которых основным повреждающим фактором является гипоксия (недостаток кислорода);
2) травматические, возникающие в результате механического повреждения тканей головного и спинного мозга в родах в первые минуты и часы жизни ребенка;
3) дисметаболические и токсико-метаболические, основным повреждающим фактором которых являются нарушения обмена веществ в организме ребенка, а также повреждения в результате употребления беременной токсических веществ (лекарств, алкоголя, наркотиков, курения);
4) поражения ЦНС при инфекционных заболеваниях перинатального периода, когда основное повреждающее воздействие оказывает инфекционный агент (вирусы, бактерии и другие микроорганизмы).

Помощь детям с поражениями ЦНС
Младенцам с повреждением ЦНС лечение и реабилитация необходимы в самые ранние сроки, поскольку в первые месяцы жизни ребенка многие из нарушений обратимы без серьезных последствий. Именно в этот период восстановительные способности детского организма особенно велики: еще возможно дозревание нервных клеток мозга взамен погибших после гипоксии, образование между ними новых связей, которые станут отвечать за нормальное развитие малыша.
Первую помощь крохам оказывают еще в родильном доме. Этот этап включает в себя восстановление и поддержание работы жизненно важных органов (сердца, легких, почек), нормализацию обменных процессов, лечение синдромов повреждения ЦНС (угнетения или возбуждения, судорог, отека мозга, повышенного внутричерепного давления). Основу лечения составляют медикаментозная и интенсивная терапия.
На фоне лечения состояние ребенка постепенно улучшается, однако многие симптомы поражения ЦНС могут сохраняться, что требует перевода в отделение патологии новорожденных и недоношенных детей либо в неврологическое отделение детской больницы. На втором этапе лечения назначают препараты, направленные на ликвидацию причины заболевания (инфекций, токсических веществ) и воздействующие на механизм развития болезни, а также лекарства, стимулирующие созревание мозговой ткани, снижающие мышечный тонус, улучшающие питание нервных клеток, мозговое кровообращение и микроциркуляцию.
Помимо медикаментозной терапии при улучшении состояния назначают курс массажа с постепенным добавлением упражнений лечебной гимнастики, сеансы электрофореза и другие методы реабилитации (доношенным младенцам - с конца 3-й недели жизни, недоношенным - чуть позднее).
После окончания курса лечения большинство детей выписываются домой с рекомендациями дальнейшего наблюдения в условиях детской поликлиники (третий этап реабилитации). Врач-педиатр совместно с невропатологом, а по необходимости - и с другими узкими специалистами (окулистом, отоларингологом, ортопедом, психологом, физиотерапевтом) составляет индивидуальный план ведения ребенка на первом году жизни. В этот период чаще всего применяются немедикаментозные методы реабилитации: массаж, лечебная гимнастика, электрофорез, импульсные токи, иглорефлексотерапия, тепловые процедуры, бальнеолечение (лечебные ванны), плавание, а также психолого-педагогическая коррекция, направленная на развитие моторики, речи и психики младенца.

Родителям, малыш которых появился на свет с признаками нарушения ЦНС, не стоит отчаиваться. Да, придется приложить гораздо больше усилий, чем другим мамам и папам, однако в итоге они себя оправдают, и наградой за этот труд станет счастливая улыбка маленького человечка.

Основные принципы развития ЦНС . В процессе онтогенеза ЦНС, согласно П.К. Анохину, происходит последовательное образование функциональных систем, обеспечивающих необходимые на данном этапе онтогенеза полезные для организма приспособительные результаты, причем, в этом развитии отражен общий биологический закон – филогенетически более старые части мозга развиваются раньше, чем молодые, которые отстают в развитии. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется главным образом спинным мозгом, в последующем, на 7–10 неделе контроль переходит к продолговатому мозгу, а с 13–14 недели – к среднему мозгу. Кортиколизация контроля происходит уже на постнатальном этапе развития.

Развитие ЦНС во внутриутробном периоде регулируется, главным образом, генетическими и гормональными (йодсодержащие гормоны щитовидной железы, стероидные гормоны) факторами. В постнатальном периоде ведущую роль в развитии играют потоки афферентной импульсации с различных рецепторов, которые создаются в процессе воспитания и обучения ребенка

Развитие рефлекторных функций различных отделов мозга зависит от становления их морфологических (развитие нейронов, миелинизация волокон, образование связей между нейронами и др.) и функциональных (установление соответствующих величин лабильности, хронаксии, МП, ПД и др.) особенностей. Трудно говорить о преобладании каких-то отдельных факторов, важно их единство на определенном этапе развития. Связывая появление различных рефлекторных реакций с развитием того или иного отдела головного мозга, необходимо иметь в виду, что в их осуществлении принимают участие и другие отделы центральной нервной системы.

Закономерности формирование ЦНС в онтогенезе. Формирование структур центральной нервной системы (нейруляция), является одним из первых процессов гистогенеза, который начинается уже в середине первого месяца эмбрионального развития. (Рис) В этот период, в середине быстро растущего полого зародыша образуется плоская клеточная пластинка, называемая эмбриональным диском . Эта пластинка составляет часть одного из трех основных зародышевых листков - эктодермы , которая дает также начало коже. Вскоре после своего появления эмбриональный диск утолщается и разрастается вдоль средней линии, на этой стадии в нем уже можно распознать первичную нервную пластинку. Нервная пластинка продолжает быстро расти, ее края начинают утолщаться, приподниматься, сближаться, и срастаются по средней линии, образуя нервную трубку .

На переднем конце трубки (на том конце, где впоследствии образуется голова), возникают три первичных мозговых пузыря . Из каждого пузыря развивается один из трех основных отделов мозга: передний, средний или задний мозг . Остальная часть нервной трубки становится спинным мозгом . Во время сворачивания нервной трубки некоторые клетки остаются вне ее, и из них формируется нервный гребень , который дает начало периферической нервной системе.



Вскоре после формирования трех первичных пузырей отмечаются первые признаки развития глаз. Затем наступает первый этап серии изгибов, которые помогают еще яснее разграничить основные структурные единицы, а также подразделить широкие внутренние полости, которые в конечном итоге будут мозговыми желудочками.

Следующий важный шаг по пути специализации происходит тогда, когда большой пузырь переднего мозга подразделяется на конечный мозг, из которого позже разовьется вся кора больших полушарий, и промежуточный мозг, из которого будут образованы таламус и гипоталамус.

Конечный мозг проходит затем еще три стадии раннего развития. Прежде всего, он дает начало обонятельным долям мозга, гиппокампу и другим соседним областям, которые лежат вокруг краев развивающегося конечного мозга. Это и будет лимбическая система, расположенная, как уже говорилось, вдоль внутренней кромки коры.

На второй стадии происходит утолщение стенок переднего мозга. Массы растущих внутри них клеток это базальные ганглии, из которых впоследствии разовьются такие структуры, как хвостатое ядро, бледный шар и скорлупа, играющие важнейшую роль в координации работы систем сенсорного и двигательного контроля, а также миндалина (миндалевидное ядро) столь же важный центр интеграции сенсорных сигналов и внутренних адаптивных реакций.

Третья стадия, развития конечного мозга включает формирование коры больших полушарий со всеми ее специализированными частями.

Так как обонятельные и лимбические структуры имеются в мозгу даже очень примитивных позвоночных животных, эту область коры называют палеокортексом или древней корой.

Кора, развивающаяся на третьей стадии, носит название неокортекс или новой коры. Когда неокортекс у приматов достигает максимальной скорости роста (около 250 тыс. клеток в минуту), поверхность его образует складки мозговые извилины. Это позволяет намного увеличить объем корковой ткани без соответствующего увеличения общих размеров мозга.

Дальнейшее развитие нервной системы обеспечивается, прежде всего, двумя существенными аспектами этого процесса: эмбриологическими перестройками, ведущими к закреплению основных функций (к функциональной детерминации), и процессами клеточной дифференцировки.

Функциональная детерминация обеспечивает обособление прежде всего сенсорных и двигательных зон будущих отделов ЦНС. Процессы клеточной дифференцировки приводят к формированию трехслойной нервной трубки. Ее слои образуют различные типы нейронов и их отростков в формирующихся отделах ЦНС. Такое трехслойное строение можно увидеть на всех уровнях от спинного до конечного мозга.

В общем виде можно сказать, что все части мозга в своем развитии проходят следующие основные стадии:

· Клетки нервной пластинки детерминируются как будущие нейроны того или иного общего типа.

· Клетки детерминированного участка начинают делиться.

· Эти клетки мигрируют к местам их промежуточного или окончательного назначения.

· Достигнув места своей окончательной локализации, все еще незрелые нейроны начинают собираться в группы, из которых позже разовьются «ядра» взрослой нервной системы.

· Эмбриональные нейроны, образующие скопления, перестают делиться и начинают формировать соединительные отростки.

· Это приводит к раннему образованию связей и обеспечивает возможность синтеза и выделения нейромедиаторов.

· В конце концов «правильные» связи стабилизируются, а клетки, связи которых оказались «неудачными» или слишком малочисленными, отмирают. Этот процесс известен как «запрограммированная гибель клеток».

Число нейронов в формирующейся ЦНС достигает максимума к 20 – 24-й неделе внутриутробного развития, и уже не увеличивается до пожилого возраста. В то же время размеры нейронов, количество отростков и функционирующих синапсов после рождения увеличиваются. Изменяются электрофизиологические характеристики нейронов. Так, например, возрастает их мембранный потенциал, от 50 мВ у новорожденных до 60-70 мВ у взрослых. С возрастом снижается длительность потенциала действия и возрастает его амплитуда, повышается частота ритмической активности нейрона. У детей первого года жизни нервные клетки обладают низкой возбудимостью и лабильностью, поэтому у них легко развивается запредельное торможение, эти дети быстро переходят из бодрствующего состояния в сон.

В синапсах повышается интенсивность образования медиатора, возрастает число рецепторов на постсинаптической мембране, увеличивается скорость синаптической передачи, повышается лабильность. Вначале формируются синапсы спинного мозга, в последующем – синапсы других отделов, включая кору больших полушарий.

Важнейшим механизмом созревания ЦНС является миелинизация нервных структур. В различных отделах ЦНС миелинизация совершается гетерохронно. Она начинается внутриутробно, а окончательно завершается к 30 – 40 годам. Миелинизация нервных волокон осуществляется в центробежном направлении, отступая несколько микрон от тела клетки к периферии нервного волокна. Отсутствие миелиновой оболочки ограничивает функциональные возможности нервного волокна и делает работу ЦНС слабо координированной.

Миелинизация некоторых спиномозговых и черепно-мозговых нервов начинается уже на 4 месяце внутриутробного развития. Первыми подвергаются миелинизации передние, двигательные корешки спинного мозга, затем – задние, чувствительные корешки. Двигательные волокна к моменту рождения практически полностью миелинизированны, окончательная миелинизация чувствительных нервов растягивается на период от 3 месев до 3 лет после рождения. К моменту рождения миелинизированы практически все проводящие пути спинного мозга, за исключением пирамидных.

Ветви лицевого нерва, иннервирующие область губ, миелинизируются на 21–24-й неделе внутриутробного развития, что указывает на раннее формирование морфологической основы сосательного рефлекса, жизненно необходимого для новорожденного.

После рождения в первую очередь миелинизируются периферические нервы, затем – волокна спинного мозга, стволовой части головного мозга, мозжечка и значительно позже – волокна коры больших полушарий.

Основная часть черепно-мозговых нервов миелинизируются к 1,5 – 2 годам, слуховые нервы завершают этот процесс к 2 годам, зрительные и языкоглоточные – к 3 – 4 годам. В среднем к 3 годам основная масса нервных волокон миелинизирована, остальные завершают этот процесс к 6 годам. Миелинизация тангенпиальных путей коры больших полушарий завершается к 30 – 40 годам.

В процессе миелинизацци происходит концентрация ионных каналов в области перехватов Ранвье, повышаются возбудимость, проводимость и лабильность нервных волокон. Так, у новорожденных нерв способен проводить 4 – 10 имп/с, в то время как у взрослых – 300 – 1000 имп/с. Скорость проведения возбуждения по нерву у взрослых в 2 раза выше, чем у новорожденных.

Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одно­клеточный слой вследствие образования и деления медуллярной трубки. В эволюции нервной системы схематично можно выде­лить такие этапы.

1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ро­товых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная систе­ма проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальней­ших этапах развития многоклеточных животных она теряет зна­чение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.

2. Ганглиозная нервная система (в червеобразных) синаптическая, проводит возбуждение в одном направлении и обе­спечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные ор­ганы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией распо­лагаются группами или узлами ганглиями, поэтому получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.

3. Трубчатая нервная система (в позвоночных) отличается от нервной си­стемы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие цен­тральной нервной системы, отдельные части и структуры которой формиру­ются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозго­вой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последователь­но развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhombencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментируется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадия трех пузырей сменяется стадией образования пяти пузырей, из которых формируются разные отделы центральной нервной системы: из telencephalon большие полушария мозга, diencephalon промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг.

Эволюция нервной системы позвоночных обусловила развитие новой системы, способной образовывать временные соединения функционирую­щих элементов, которые обеспечиваются расчленением центральных нерв­ных аппаратов на отдельные функциональные единицы нейроны. Следо­вательно, с возникновением скелетной моторики в позвоночных развилась нейронная цереброспинальная нервная система, которой подчинены более древние образования, что сохранились. Дальнейшее развитие централь­ной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или соподчинения. Суть принципа субординации состоит в том, что эволюционно новые нервные образования не только ре­гулируют функции более древних, низших нервных структур, а и соподчи­няют их себе путем торможения или возбуждения. Причем субординация существует не только между новыми и древними функциями, между голов­ным и спинным мозгом, но и наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в определенной степени даже между шейным и поясничным утолщениями спинного мозга. С появлением новых функций нервной системы древние не исчезают. При выпадении новых функций появляются древние формы реакции, обусловленные функцио­нированием более древних структур. Примером может служить появление субкортикальных или стопных патологических рефлексов при поражении коры большого мозга.

Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологи­ческом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию в хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны с принципом субор­динации и возрастающей специализацией центров и корковых структур. Функциональной эволюции соответствует эволюция морфологическая. При этом филогенетически более молодые структуры мозга являются более ранимыми и в меньшей степени обладают способностью к восстановлению.

Нервная система имеет нейронный тип строения, т. е. состоит из нерв­ных клеток - нейронов, которые развиваются из нейробластов.

Нейрон является основной морфологической, генетической и функцио­нальной единицей нервной системы. Он имеет тело (перикарион) и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке лишь один. Дендриты - это большое количество коротких древообразных разветвленных отростков. Они передают нервные импульсы по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нерв­ных клеток являются хроматофильная субстанция и нейрофибриллы. Хроматофильная субстанция имеет вид разных по размерам комочков и зерен, содержится в теле и дендритах нейронов и никогда не выявляется в аксонах и начальных сегментах последних. Она является показателем функциональ­ного состояния нейрона: исчезает в случае истощения нервной клетки и вос­станавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Гольджи), митохондрии и другие органоиды. Сосредоточение тел нервных кле­ток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В границах центральной нерв­ной системы они образуют проводящие пути - белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные во­локна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна входят в состав головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шванновской оболочки) и базальной мембраны. Мембрана аксона служит для про­ведения электрического импульса и в участке аксональных окончании выде­ляет медиатор, а мембрана дендритов - реагирует на медиатор. Кроме того, она обеспечивает распознавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые оболочки нервных волокон не сплошные, а прерыва­ются промежутками сужений - узлами (узловые перехваты Ранвье). Ионы могут проникать в аксон только в области перехватов Ранвье и в участке на­чального сегмента. Безмиелиновые нервные волокна типичны для автономной (вегетативной) нервной системы. Они имеют простое строение: состоят из осевого цилиндра, нейролеммы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем немиелиновыми (1-2 м/с).

Основными функциями нейрона являются восприятие и переработка ин­формации, проведение ее к другим клеткам. Нейроны выполняют также тро­фическую функцию, влияя на обмен веществ в аксонах и дендритах. Различа­ют следующие виды нейронов: афферентные, или чувствительные, которые воспринимают раздражение и трансформируют его в нервный импульс; ассо­циативные, промежуточные, или интернейроны, которые передают нервный импульс между нейронами; эфферентные, или моторные, которые обеспечи­вают передачу нервного импульса на рабочую структуру. Эта классификация нейронов основывается на положении нервной клетки в составе рефлектор­ной дуги. Нервное возбуждение по ней передается лишь в одном направле­нии. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делятся на пирамидные и непирамидные.

Нервные клетки контактируют между собой через синапсы специали­зированные структуры, где нервный импульс переходит из нейрона на ней­рон. Большей частью синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксоаксональные, дендродентритные. Итак, любая часть нейрона может образовывать синапс с разными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать ин­формацию от 1000 других нейронов. В составе синапса различают две части -пресинаптическую и постсинаптическую, между которыми находится синаптическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. Большей частью она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмит-терами, являются разные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергических - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропептиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов - возбуждающие, которые способствуют генерации импульсов (де­поляризация), и тормозные, которые могут тормозить действие сигналов (ги­перполяризация). Нервным клеткам присущ низкий уровень возбуждения.

Испанский нейрогистолог Рамон-и-Кахаль (1852-1934) и итальянский гистолог Камилло Гольджи (1844-1926) за разработку учения о нейроне как о морфологической единице нервной системы были удостоены Нобелевской премии в области медицины и физиологии (1906 г.). Суть разработанной ими нейронной доктрины заключается в следующем.

1. Нейрон является анатомической единицей нервной системы; он состо­ит из тела нервной клетки (перикарион), ядра нейрона и аксона / дендритов. Тело нейрона и его отростки покрыты цитоплазматической частично про­ницаемой мембраной, которая выполняет барьерную функцию.

2. Каждый нейрон является генетической единицей, развивается из не­зависимой эмбриональной клетки-нейробласта; генетический код нейрона точно определяет его структуру, метаболизм, связи, которые генетически запрограммированы.

3. Нейрон является функциональной единицей, способной воспринимать стимул, генерировать его и передавать нервный импульс. Нейрон функцио­нирует как единица лишь в коммуникационном звене; в изолированном со­стоянии нейрон не функционирует. Нервный импульс передается на другую клетку через терминальную структуру - синапс, с помощью нейротранс-миттера, который может тормозить (гиперполяризация) или возбуждать (деполяризация) последующие нейроны на линии. Нейрон генерирует или не генерирует нервный импульс в соответствии с законом «все или ничего».

4. Каждый нейрон проводит нервный импульс лишь в одном направле­нии: от дендрита к телу нейрона, аксону, синаптическому соединению (ди­намическая поляризация нейронов).

5. Нейрон является патологической единицей, т. е. реагирует на повреж­дение как единица; при сильных повреждениях нейрон гибнет как клеточная единица. Процесс дегенерации аксона или миелиновой оболочки дистальнее места повреждения называется валлеровской дегенерацией (перерождением).

6. Каждый нейрон является регенеративной единицей: у человека реге­нерируют нейроны периферической нервной системы; проводящие пути в пределах центральной нервной системы эффективно не регенерируют.

Таким образом, в соответствии с нейронной доктриной нейрон является анатомической, генетической, функциональной, поляризованной, патологи­ческой и регенеративной единицей нервной системы.

Кроме нейронов, которые образовывают паренхиму нервной ткани, важ­ным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество ко­торых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секре­торная, защитная. Глиальные клетки принимают участие в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиа­торов центральной нервной системы. Нейроглия играет важную роль так­же в синаптической передаче. Она обеспечивает структурную и метаболи­ческую защиту для сетки нейронов. Итак, между нейронами и глиальными клетками существуют разнообразные морфофункциональные связи.

РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ ЧЕЛОВЕКА

ФОРМИРОВАНИЕ МОЗГА ОТ МОМЕНТА ОПЛОДОТВОРЕНИЯ ДО РОЖДЕНИЯ

После слияния яйцеклетки со сперматозоидом (оплодотворения) новая клетка начинает делиться. Через некоторое время из этих новых клеток образуется пузырек. Одна стенка пузырька впячивается внутрь, и в результате образуется зародыш, состоящий из трех слоев клеток: самый внешний слой – эктодерма, внутренний – эндодерма и между ними – мезодерма. Нервная система развивается из наружного зародышевого листка – эктодермы. У человека в конце 2-й недели после оплодотворения обособляется участок первичного эпителия и образуется нервная пластинка. Ее клетки начинают делиться и дифференцироваться, вследствие чего они резко отличаются от соседних клеток покровного эпителия (рис. 1.1). В результате деления клеток края нервной пластинки приподнимаются и появляются нервные валики.

В конце 3-й недели беременности края валиков смыкаются, образуя нервную трубку, которая постепенно погружается в мезодерму зародыша. На концах трубки сохраняются два нейропора (отверстия) – передний и задний. К концу 4-й недели нейропоры зарастают. Головной конец нервной трубки расширяется, и из него начинает развиваться головной мозг, а из оставшейся части – спинной мозг. На этой стадии головной мозг представлен тремя пузырями. Уже на 3–4-й неделе выделяются две области нервной трубки: дорсальная (крыловидная пластинка) и вентральная (базальная пластинка). Из крыловидной пластинки развиваются чувствительные и ассоциативные элементы нервной системы, из базальной – моторные. Структуры переднего мозга у человека целиком развиваются из крыловидной пластинки.

В течение первых 2 мес. беременности образуется основной (среднемозговой) изгиб головного мозга: передний мозг и промежуточный мозг загибаются вперед и вниз под прямым углом к продольной оси нервной трубки. Позже формируются еще два изгиба: шейный и мостовой. В этот же период первый и третий мозговые пузыри разделяются дополнительными бороздами на вторичные пузыри, при этом появляется 5 мозговых пузырей. Из первого пузыря образуются большие полушария головного мозга, из второго – промежуточный мозг, который в процессе развития дифференцируется на таламус и гипоталамус. Из оставшихся пузырей формируются мозговой ствол и мозжечок. В течение 5–10-й недели развития начинается рост и дифференцировка конечного мозга: образуются кора и подкорковые структуры. На этой стадии развития появляются мозговые оболочки, формируются ганглии нервной периферической вегетативной системы, вещество коры надпочечников. Спинной мозг приобретает окончательное строение.

В следующие 10–20 нед. беременности завершается формирование всех отделов головного мозга, идет процесс дифференцировки мозговых структур, который заканчивается только с наступлением половозрелости (рис. 1.2). Полушария становятся самой большой частью головного мозга. Выделяются основные доли (лобная, теменная, височная и затылочная), образуются извилины и борозды больших полушарий. В спинном мозге в шейном и поясничном отделах формируются утолщения, связанные с иннервацией соответствующих поясов конечностей. Окончательный вид приобретает мозжечок. В последние месяцы беременности начинается миелинизация (покрытие нервных волокон специальными чехлами) нервных волокон, которая заканчивается уже после рождения.

Головной и спинной мозг покрыты тремя оболочками: твердой, паутинной и мягкой. Головной мозг заключен в черепную коробку, а спинной мозг – в позвоночный канал. Соответствующие нервы (спинномозговые и черепные) покидают ЦНС через специальные отверстия в костях.

В процессе эмбрионального развития головного мозга полости мозговых пузырей видоизменяются и превращаются в систему мозговых желудочков, которые сохраняют связь с полостью спинномозгового канала. Центральные полости больших полушарий головного мозга образуют боковые желудочки довольно сложной формы. Их парные части имеют в своем составе передние рога, которые находятся в лобных долях, задние рога, находящиеся в затылочных долях, и нижние рога, расположенные в височных долях. Боковые желудочки соединяются с полостью промежуточного мозга, которая является III желудочком. Через специальный проток (сильвиев водопровод) III желудочек соединяется с IV желудочком; IV желудочек образует полость заднего мозга и переходит в спинномозговой канал. На боковых стенках IV желудочка находятся отверстия Люшки, а на верхней стенке – отверстие Мажанди. Благодаря этим отверстиям полость желудочков сообщается с подпаутинным пространством. Жидкость, заполняющая желудочки головного мозга, называется эндолимфой и образуется из крови. Процесс образования эндолимфы протекает в специальных сплетениях кровеносных сосудов, (они называются хороидальными сплетениями). Такие сплетения находятся в полостях III и IV мозговых желудочков.

Сосуды головного мозга. Головной мозг человека очень интенсивно снабжается кровью. Это связано, прежде всего, с тем, что нервная ткань одна из наиболее работоспособных в нашем организме. Даже ночью, когда мы отдыхаем от дневной работы, наш мозг продолжает интенсивно работать (подробнее см. раздел «Активирующие системы мозга»). Кровоснабжение головного мозга происходит по следующей схеме. Головной мозг снабжается кровью по двум парам основных кровеносных сосудов: общим сонным артериям, которые проходят в области шеи и их пульсация легко прощупывается, и паре позвоночных артерий, заключенных в латеральных частях позвоночного столба (см. приложение 2). После того как позвоночные артерии покидают шейный последний позвонок, они сливаются в одну базальную артерию, которая проходит в специальной ложбине на основании моста. На основании мозга в результате слияния перечисленных артерий образуется кольцевой кровеносный сосуд. От него кровеносные сосуды (артерии) веерообразно охватывают весь мозг, включая большие полушария.

Венозная кровь собирается в специальные лакуны и покидает пределы головного мозга по яремным венам. Кровеносные сосуды головного мозга вмонтированы в мягкую мозговую оболочку. Сосуды многократно ветвятся и в виде тонких капилляров проникают в мозговую ткань.

Головной мозг человека надежно защищен от проникновения инфекций так называемым гематоэнцефалическим барьером. Этот барьер формируется уже в первую треть срока беременности и включает в себя три мозговые оболочки (самая внешняя – твердая, затем паутинная и мягкая, которая прилежит к поверхности мозга, в ней находятся кровеносные сосуды) и стенки кровеносных капилляров мозга. Другой составляющей частью этого барьера являются глобальные оболочки вокруг кровеносных сосудов, образованные отростками клеток глии. Отдельные мембраны клеток глии тесно прилегают друг к другу, создавая щелевые контакты между собой.

В головном мозге есть участки, где гематоэнцефалический барьер отсутствует. Это район гипоталамуса, полость III желудочка (субфорникальный орган) и полость IV желудочка (area postrema). Здесь стенки кровеносных сосудов имеют специальные места (так называемый фенестрированный, т.е. продырявленный, эпителий сосудов), в которых из нейронов головного мозга в кровеносное русло выбрасываются гормоны и их предшественники. Подробнее эти процессы будут рассмотрены в гл. 5.

Таким образом, с момента зачатия (слияние яйцеклетки со сперматозоидом) начинается развитие ребенка. За это время, которое занимает почти два десятка лет, развитие человека проходит несколько этапов (табл. 1.1).

Вопросы

1. Этапы развития центральной нервной системы человека.

2. Периоды развития нервной системы ребенка.

3. Что составляет гематоэнцефалический барьер?

4. Из какой части нервной трубки развиваются сенсорные и моторные элементы центральной нервной системы?

5. Схема кровоснабжения головного мозга.

Литература

Коновалов А. Н., Блинков С. М., Пуцило М. В. Атлас нейрохирургической анатомии. М., 1990.

Моренков Э. Д. Морфология мозга человека. М.: Изд-во Моск. ун-та, 1978.

Оленев С. Н. Развивающийся мозг. Л., 1979.

Савельев С. Д. Стереоскопический атлас мозга человека. М.: Area XVII, 1996.

Шаде Дж., Форд П. Основы неврологии. М., 1976.

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Заболевания нервной системы Судороги. Судорожные проявления могут отмечаться у щенка в первые недели его жизни. Щенок в течение 30-60 секунд подергивает передними и задними конечностями, иногда отмечается подергивание головы. Пена, моча, кал не выделяются, как при

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование нервной системы Диагностика заболеваний нервной системы базируется на исследовании головного мозга и поведения собак. Ветеринар должен фиксироваться на следующих вопросах:– наличие у животного чувства страха, резких перемен в поведении;– наличие

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

8 Болезни нервной системы Нервная система собак работает по принципу обратной связи: из внешней среды через органы чувств и кожу в мозг поступают импульсы. Мозг воспринимает эти сигналы, перерабатывает их и посылает указания органу-исполнителю. Это так называемая

Из книги Реакции и поведение собак в экстремальных условиях автора Герд Мария Александровна

Нейробиологический подход к исследованию нервной системы человека В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Дело в том,

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно – как «ключ к замку») с

Из книги Основы психофизиологии автора Александров Юрий

Глава 7 ВЫСШИЕ ФУНКЦИИ НЕРВНОЙ СИСТЕМЫ Общепризнано, что нервная высшая деятельность человека и животных обеспечивается целым комплексом совместно работающих мозговых структур, каждая из которых вносит в этот процесс свой специфический вклад. Это означает, что нервная

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Глава шестая РЕАКЦИИ НЕРВНОЙ СИСТЕМЫ СОБАК В УСЛОВИЯХ ЭКСТРЕМАЛЬНЫХ ФАКТОРОВ Известно, что центральная нервная система играет ведущую роль как высший интегрирующий орган и ее функциональное состояние имеет решающее значение для общего состояния живых организмов.

Из книги Антропология и концепции биологии автора

Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при клиническом обследовании собак в условиях

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Типы нервной системы Большое значение в патологии нервных заболеваний и лечении нервнобольных имеют типы нервной деятельности, разработанные академиком И. П. Павловым. В обычных условиях разные собаки по-разному реагируют на внешние раздражения, по-разному относятся к

Из книги автора

1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б.М. Теплев и В.Д. Небылицын, а также их

Из книги автора

§ 3. Функциональная организация нервной системы Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного

Из книги автора

§ 5. Энергетические расходы нервной системы Сопоставив размеры мозга и размеры тела животных, легко установить закономерность, по которой увеличение размеров тела чётко коррелирует с увеличением размеров мозга (см. табл. 1; табл. 3). Однако мозг является только частью

Из книги автора

§ 24. Эволюция ганглиозной нервной системы На заре эволюции многоклеточных сформировалась группа кишечнополостных с диффузной нервной системой (см. рис. II-4, а; рис. II-11, а). Возможный вариант возникновения такой организации описан в начале этой главы. В случае

Из книги автора

§ 26. Происхождение нервной системы хордовых Наиболее часто обсуждаемые гипотезы происхождения не могут объяснить появление одного из основных признаков хордовых - трубчатой нервной системы, которая располагается на спинной стороне тела. Мне хотелось бы использовать

Из книги автора

Направления эволюции нервной системы Мозг – структура нервной системы. Появление нервной системы у животных давало им возможность быстро адаптироваться к меняющимся условиям среды, что, безусловно, можно рассматривать как эволюционное преимущество. Общей

Из книги автора

8.2. Эволюция нервной системы Совершенствование нервной системы – одно из главных направлений эволюции животного мира. Это направление содержит огромное количество загадок для науки. Не совсем ясен даже вопрос происхождения нервных клеток, хотя принцип их

Похожие публикации