Невероятные технологии медицины будущего. Удивительные медицинские технологии будущего, которые уже изобретены

" попытались разобраться, каким из этих прогнозов можно доверять, а каким - нет.


Предисловие

Недавно у нас была лекция по анатомии, где наш многоуважаемый профессор Е. С. Околокулак рассказывал о центральной нервной системе - конечный мозг и т.д. Неожиданно для нас он заявил, что подготовил мультфильм , и мы переглянулись, мол, зачем нам, таким серьезным людям, мультфильмы. Это было, конечно же, шуткой, - а имел он в виду новейшую программу, которая была недавно создана совместно медиками и программистами. Он говорил о 3D-презентации структур мозга, как всех вместе, так и по отдельности. Но я не был сильно удивлен этим, учитывая то, что я часами просматриваю фантастические фильмы и тонны видео с Ютуба на данную тематику, и то, что с таким восторгам показывал нам наш профессор, мне казалось само собой разумеющимся. Конечно, на самом деле, на разработку такой программы ушли годы, и программа эта никому не передается, а хранится чуть ли ни в сейфе профессора. Но не в этом суть.

Профессор плавным образом перешел к теме будущего медицины , и высказал свое мнение, коснувшись, правда, только одной сферы. Он сказал, что в скором времени мы будем крутить 3D-модель мозга в воздухе, совсем как в фантастических фильмах , и в этом нет никакого сомнения. Такой солидный и серьезный профессор говорил про такие вещи, и мы не могли в этом ни на секунду усомниться. Тем более что мы живем в такое время. Потом он сказал, что несколько лет назад 3D-сканирование мозга было фантастикой, а теперь многие врачи в практике спокойно могут послойно смотреть структуры мозга.


3D-проецирование с возможностью управления жестами

Это первое, что я хочу описать, так как наш профессор именно этот прогноз и выказал в своей лекции. На самом деле, на практике уже сегодня 3D-сканирование применяется, и на сегодняшний день мы можем просканировать тот же мозг, а потом крутить его, увеличивать, послойно "резать", и просматривать, какая патология в той или иной зоне. Но! Все это мы делаем посредством мышки, клавиатуры, то есть через экран монитора. А что, если в ближайшем будущем мы сможем проецировать 3D-модель мозга в реальном времени в воздух, и крутить его в разные стороны, увеличивать, "резать" его прямо в воздухе теми же жестами? Да, это будет возможно в будущем! Доказательством этому является то, что ученые уже начали работать в этом направлении, и на сегодняшний день мы можем управлять жестами компьютером, но все так же на экране, то есть, проецируя картину на поверхность (по методу "Кинекта "). В ближайшее время, впрочем, такие сенсоры усовершенствуются, и мы сможем двигать моделями прямо в воздухе, совсем как Тони Старк из фильма "Железный Человек". На достижение этой цели уйдет, я думаю, примерно 10-15 лет, не больше. Это не сбудется лишь в том случае, если сами врачи посчитают это неудобным.


Одежда-сенсор

Про это даже не стоит дискутировать, потому что уже сейчас в Индии придумали такую одежду, которая регистрирует разные показатели организма. Её будут покупать те, кто нуждается в сканировании функций своего организма в определенные промежутки времени, и при этом не хочет тратить время на обследование в больницах. Бесценна будет она и в спорте.

В режиме реального времени будут отображаться все функции организма, начиная от пульса, артериального давления и заканчивая общим тонусом мышц. Информация будет поступать на смартфон , ну а оттуда синхронизироваться с компьютером дома, или на устройствах врачей. Так будет уже через 10-15 лет.


3D-принтеры органов человека

Конечно же, я не мог про это не упомянуть. Нашумевшая тема именно в наш переходной период времени - 3D-принтеры . Уже не в диковинку 3D-принтеры , которые производят фигурки и детальки из пластика, из которых можно собрать даже оружие. Теперь ученые из нескольких стран занимаются тем, что выращивают живые органы путем распечатки их на 3D-биопринтерах. Они "распечатали" почку, но оказалось, что почка эта функционирует только 4 месяца - и все. На данном этапе эта проблема решается. Решат её через 5-10 лет.


Успехи в нейротехнологии

Именно это направление заинтересовало меня больше всех, потому что мозг и вообще нервная система - это плеяда таинственных структур, которые не так сильно изучены человеком. У одного, к примеру, вырезали полмозга и даже больше, а он вполне себе обычный человек, со среднестатистическим умом; другому вырезали малюсенький кусочек некротизированной ткани - и он стал овощем. На этом поприще есть много неизученного, и над этим сегодня работают многие ученые.

Так как я отучился на фельдшера скорой помощи, не упомянуть про это я тоже не мог. Несколько возможных прогнозов:

  • "Обратимая смерть", которая даст время для спасения пострадавшего. Например, ввести крио-раствор вместо крови, пока человека везут в реанимацию.
  • Получение достоверной и нужной информации о повреждениях сразу со смартфона или напрямую с одежды пострадавшего.
  • Доставка кислорода в любые поврежденные части тела, особенно в мозг, более быстрым способом - опять же, через специальный раствор.
  • Приспособления для поддержания активности мозга , если даже тело перестало качать кровь. Что-то вроде каски, которая оборудована проводами и трубочками с заменителями крови.
  • В реанимационной, за счет технологий, оборудованных по последнему слову техники, реаниматологи не будут терять те драгоценные минуты, от которых многое зависит.

Из-за меньшего внимания к реаниматологии, чем к другим отраслям медицины, со стороны исследователей и правительств, на реализацию этого прогноза может понадобиться и 20 лет.


И последний прогноз - это всеобщая компьютеризация и интеграция всех структур медицины

Инновации коснутся непосредственно всех структур медицины. Даже таких простых, как выписка лекарств больному, заполнение его истории болезни , получение информации - о нем, о его болезнях, которыми он болел до этого, о его наследственных заболеваниях , с их вероятностью... Все это будет синхронизироваться в центральных серверах и подаваться на планшеты, которые будут даваться каждому доктору, когда они начнут работу. Им останется только приложить электронную карточку пациента к девайсу. Если нет карточки - не беда, всегда можно заполнить все, даже не печатая, а разговаривая (голосовое управление). У нас, правда, это всё будет лет через 50, а то и 80.

В итоге хочется сказать, что все это возможно лишь в том случае, если мы не будем себя ограничивать. Как сказал наш профессор: "Десять лет назад все, что мы видим сейчас, было лишь фантастикой и плодом воображения писателей и режиссеров, а сейчас, - все это окружает нас. И нет сомнения в том, что то, что показывают сейчас в фантастических фильмах и пишут в книгах - сбудется в ближайшие 5-10 лет". Ну, может и не за 5-10 лет, но в ближайшие 50-80 лет должно сбыться точно. Я в это верю.

А вы верите в это?

Ибрагим САЛАМОВ

Ещё совсем недавно «технические» возможности врача ограничивались фонендоскопом, приобретённым опытом и интуицией. Сегодня медицина – это царство современных технологий, позволяющих проникать в неведомые ранее глубины человеческой плоти – до молекул и атомов, откуда, как оказалось, и берут своё начало большинство человеческих недугов.

Второе дыхание антибиотиков

Когда-то антибиотики спасли миллионы жизней от опаснейших инфекций. Но тут случилось непредвиденное. Всему виной стала доступность антибиотиков, помноженная на бесконтрольное их применение, что привело к адаптации инфекций к своим «заклятым врагам».

Сегодня учёные заняты созданием антибиотиков нового поколения. Один из них – , разработанный учёными Северо-Восточного университета США на основе бактерии, обнаруженной в почве. Её достоинства – в губительном воздействии на многие виды болезнетворных микробов и абсолютной безвредности для организма.

«Умный» всевидящий протез

Специалистами Мичиганского технологического университета разработан прототип голеностопного с системой микропроцессорного управления, в которую входит видеокамера, сканирующая пространство спереди и сзади. Её основная функция – определить профиль поверхности и передать видеоинформацию в «бортовой» компьютер. Тот, в свою очередь, тщательно проанализировав её, сформирует оптимальный угол и жёсткость лодыжке, что характерно для «живой» ноги.

Модель виртуального человека

Идея по её созданию принадлежит учёным Нижегородского госуниверситета. Цель проекта – смоделировать виртуальный человеческий клон со всеми мельчайшими «подробностями», характерными для живого организма, но только в цифровом виде. Для этого потребовалось суперкомпьютер «Лобачевский» производительностью 600 терафлоп.

Теперь появилась возможность составить компьютерную модель практически любого человека и отрабатывать на ней различные варианты лечения.

Электронная кожа контролирует мозг

Этот кусочек золотистой ткани не больше почтовой марки на самом деле изящное электронное носимое устройство . Его создали Джон Роджерс и его коллеги-учёные из университета Иллинойса.

Внутри находятся миниатюрные датчики, отслеживающие процессы, протекающие в организме. При размещении на голове устройство может отслеживать электронные волны, предшествующие различным мозговым расстройствам, в частности, эпилепсии.

Приложение, предсказывающее болезни

Его автор – российская студентка Софья Кореневская. предупредит пользователей о возникновении опасных заболеваний органов пищеварения, сердца и нервной системы на основе биомедицинских показателей, зафиксированных установленным на теле программно-техническим комплексом.

Нанобинты заживляют раны

Понятие «незаживающая рана» связано с присутствием в ней патогенных микроорганизмов, устойчивых к антибиотикам. Учёные из Института физики прочности и материаловедения (Томск) разработали , взаимодействующие с микроорганизмами совершенно по новому принципу, что сводит на нет возможность заражения и обеспечивает быстрое заживление раны.

Слуховой аппарат, подключённый к черепу

Новое поколение слуховых аппаратов предполагает передачу звуковых колебаний через кости черепа. Известный британский лор-хирург Рэй Джейдип разработал устройство T-OBCD, для людей с односторонней глухотой. С помощью несложной операции титановый имплантат закрепляется на кости черепа за ухом. Передача звука осуществляется двумя магнитами.

Вместо скальпеля нанопузырьки

Как правило, при лечении злокачественных опухолей печени приходится прибегать к хирургическому вмешательству. Исследователи университета штата Иллинойс разработали гораздо более щадящую и эффективную методику борьбы с этим страшным заболеванием. Вместо скальпеля опухоль уничтожают , заполненные противораковым препаратом. Проникнув в опухоль, они в нужное время лопаются, разрушая её изнутри.

Медицинские технологии – ровесники медицины

Целители прошлого быстро уяснили, что для успешной борьбы с недугами необходимо знание анатомии, химии, механики, что повреждённый или утраченный орган можно заменить искусственным, а для того, чтобы сделать операцию, требуются специальные инструменты.

Среди артефактов древности встречаются описания кровопускания, трепанации черепа и других сложных операций. В Древнем Риме была хорошо развита стоматология и создавались уникальные для того времени хирургические инструменты.


На ноге одной из древнеегипетских мумий археологи обнаружили великолепный протез большого пальца, а в гробнице Тутанхамона – «предков» современных солнечных очков.

Никогда бы не возникла и современная фармакология, не будь целителей-травников, тысячи лет собиравших, изучавших целебные свойства растений и создававших на их основе удивительные лекарства.

Телематика и компьютерный анализ данных, датчики состояния здоровья и когнитивные технологии, онлайн-запись к врачам и дистанционный прием, медицинские гаджеты и приложения для смартфонов. Таковы направления развития информационных технологий в медицине. По мнению экспертов, опрошенных «Профилем», через 5-10 лет постоянным мониторингом состояния здоровья «будут заниматься большие роботы и маленькие гаджеты».

Медицина и мониторинг состояния здоровья,  с одной стороны, – высокотехнологичная сфера. С другой – российский рынок здравоохранения, особенно государственная его часть, очень осторожен и нетороплив. Однако, несмотря на всю консервативность российского медицинского рынка, базовая информатизация большей части российского здравоохранения уже состоялась: медицинские учреждения подключились к интернету, пациенты могут записываться на прием к врачам онлайн. Теперь же идет расширение и совершенствование уже существующей системы – интеграция информационных систем на региональном и федеральном уровне, развивается телемедицина, поликлиники переходят к использованию единой медицинской карты. В результате, по итогам 2014 года, объем бюджетных затрат на информационные технологии (ИТ) в здравоохранении превысил 6,5 млрд рублей, подсчитали эксперты-аналитики Vademecum.

Big Data и гаджеты

Основной глобальный тренд в области информатизации медицины, в том числе спортивной, – Big Data («большие данные» – обширные массивы глобальных неструктурированных данных), которые обрабатываются при помощи когнитивных технологий. Таким образом, возможно объединение архивов исследований, да и вообще всех накопленных знаний по какой-либо теме в одно глобальное мета-исследование.

«Когнитивные технологии представляют собой совокупность математических методов, алгоритмов и компьютерных технологий, которые позволяют создать умные машины», – объясняет руководитель дирекции «Технософт» компании «Техносерв» Сергей Строганов.

Глубокое обучение – один из наиболее успешных подходов для решения отдельных задач при помощи когнитивных методов, отмечает Строганов. При данном подходе используются глубокие (то есть с большим количеством слоев и сложными зависимостями, способные извлечь мельчайшие абстрактные признаки) нейронные сети различных типов, которые позволяют задействовать широкий класс алгоритмов в зависимости от данных, на которых они обучаются.

Такие технологии могут применяться в медицине, например, для анализа изображений с УЗИ, МРТ, рентгеновских снимков, анализа историй болезней и выдачи рекомендаций на их основе, создания умных протезов, управляемых через нейроинтерфейс (в том числе для восстановления моторных функций).

«Рекомендательные системы, системы контроля и поддержки принятия клинических решений позволят сделать с лечебной работой то же самое, что произошло со многими другими формами интеллектуального труда, – освободить врача от рутины и зубрежки, помогут ему не совершать ошибок по невнимательности. Фактически в профессию врача – очень ответственную и романтическую – приходит «автопилот», – говорит руководитель проекта «Здоровье@Mail.Ru» Евгений Паперный. Правда, отмечает он, последнее актуально прежде всего для тех стран, где время врача стоит очень дорого.

Пример использования когнитивных технологий – приложение Workplace Health, созданное американской кардиологической ассоциацией. Приложение использует возможности системы IBM Watson: она будет осуществлять осмысление аналитических данных и таким образом поможет выработать рекомендации работодателям по поддержанию здоровья своих сотрудников. К примеру, Watson подскажет, как корпорациям правильно создавать и адаптировать медицинские страховые и оздоровительные программы для сотрудников, чтобы это способствовало качественному улучшению их здоровья. Инициатива призвана снизить риск развития сердечно-сосудистых заболеваний, которым на сегодняшний день подвержено более 85 миллионов американцев.

Второй по важности тренд – портативные устройства, в первую очередь интегрированные с телефоном и часами. «Самостоятельные фитнес- и медицинские трекеры существуют, но при всей популярности их распространение не сравнимо с количеством пользователей смартфонов. Поэтому самое интересное – это получать медицинские/фитнес-данные при помощи существующих датчиков», – считает Евгений Паперный. Область датчиков физиологических параметров также называют Quantified Self или Internet of Me.

Так, в базовую поставку обычного iPhone входит не только приложение Health, но и фреймворки ResearchKit и CareKit, позволяющие разрабатывать медицинские приложения, поясняет он. «В результате выяснилось, что для оценки динамики течения болезни Паркинсона не нужно лишних анализов: результат можно получить на основе анализа движений пациента или паттернов дрожания его голосовых связок. Одновременно с новым лекарственным препаратом фармкомпания может выпустить мобильное приложение, которое контролирует его прием или позволяет сообщать о побочных явлениях», – рассуждает он.

В будущем же эта технология приведет к тому, что визит к врачу не будет сопровождаться вопросами типа «чем болели и какие анализы делали?»: врач сможет быстро ознакомиться с показаниями сенсоров, которые уже проанализированы с использованием технологий «больших данных», быстро поставить диагноз и определить требуемое лечение, диету или режим, прогнозирует директор по отраслевым решениям департамента ИТ и ЦОД компании Huawei в России Алексей Шалагинов.

То же относится и к спортивной медицине, причем возможности использования здесь еще шире, отмечает Шалагинов. К примеру, по полученной с датчиков информации страховые компании смогут определять персонализированную стоимость страховки клиента.

«Отстаем на пару лет по технологиям, на 50 – по менеджменту»

Впрочем, эксперты отмечают: российский рынок пока еще очень далек от применения подобных систем. «Российский рынок пока только приближается к осознанию необходимости таких медицинских систем. Например, цифра в 50% использования медицинских сенсоров пациентами в развитых странах в России едва ли составляет единицы процентов, причем в лучшем случае пациент может показать свой смартфон врачу на приеме с информацией о длительности фаз легкого или глубокого сна,  – сетует Алексей Шалагинов. – Верхом информатизации российской медицины пока является высылка результатов анализов на электронную почту пациента».

По оценке Евгения Паперного, Россия отстает от лидеров рынка на пару лет по технологическим и интеллектуальным возможностям, на 10 лет – по уровню образования и академической подготовке и на 50 лет – по качеству менеджмента в отрасли. «У нас упущен момент, когда можно было создать хорошую централизованную медицинскую систему в масштабах всей страны. Каждый регион успел создать свои системы, и теперь объединить их в нечто единое очень сложно. Это уже создает проблемы, причем на всех уровнях», – добавляет Паперный.

К примеру, у существующих в России коммерческих систем для записи в лечебные учреждения, крупнейшие из которых – DocDoc и «ИнфоДоктор», нет полноценной интеграции с медицинскими информационными системами (МИС) лечебно-профилактических учреждений. В результате пациент не может увидеть, когда у того или иного врача есть «окно». Причина – отсутствие адекватной стандартизации интерфейсов и услуг.

«Отсутствие утвержденных стандартов оказания медицинской помощи, обязательных для применения на всей территории страны, препятствует проникновению информационных технологий, – считает руководитель направления цифрового здравоохранения ГК «ФОРС» Александр Антипов.

Кроме того, в России нет единого реестра диагностических процедур, из-за чего в разных клиниках одни и те же анализы и исследования называются по-разному. Например, в одном учреждении пишут: «исследование желудка с введением контрастного вещества», в другом – «рентген желудка с контрастом». Для автоматизированных систем это далеко не синонимы.

Однако, по мнению Антипова, главное не технологии, а менталитет. «В отличие от многих других стран, у нас крайне плохо обстоят дела с профилактикой и предупреждением заболеваний. Отсутствуют государственные программы предупредительной диагностики, скринингов и т. д., – говорит эксперт. – Да и сами граждане относятся к своему здоровью крайне легкомысленно, добровольное медицинское страхование действует преимущественно в корпоративном секторе».

Прогнозы

Рынок электронной медицины очень диверсифицирован, из-за чего сложно дать прогнозы по его развитию в целом, отмечают аналитики. По данным аналитической компании PriceWaterhouseCoopers, в течение следующих 5–7 лет наибольшими темпами будет развиваться диагностический сегмент электронной медицины с годовым ростом 15%, поскольку число пациентов в мире с хроническими заболеваниями, по данным американского центра контроля и предотвращения болезней Center for Decease Control and Prevention, продолжает расти.

Рынок «мобильной медицины» (mHealth) будет расти наиболее быстро, со среднегодовым темпом роста 27% в течение следующих пяти лет, прогнозируют аналитики PWC. По данным американской телемедицинской ассоциации (АТА), число пациентов, использующих mHealth, увеличилось в несколько раз с 2000-го по 2015 год, а число загрузок приложений мобильной медицины составило в Северной Америке 44 млн в 2015 году. «По информации ГНИИ ЦПМ МЗ РФ, более половины российских пользователей смартфонов готовы к использованию технологий мобильного здравоохранения (mHealth), более 10% опрошенных готовы к оплате данного вида услуг, – сообщил Александр Антипов. – По результатам их исследований, использование услуг персонального мониторинга существенно повышает приверженность пациентов назначенному лечению и, как следствие, приводит к снижению числа госпитализаций и повышению качества жизни. Аналогичные результаты были продемонстрированы и в ходе наших пилотных проектов в лечебных учреждениях по использованию платформы дистанционного мониторинга REMSMED для ведения хронических больных».

В медицине основами прорыва являются миниатюризация элементной базы, повышение автономности источников питания, отмечает Сергей Строганов. Этот тренд также будет активно развиваться в ближайшие годы, прогнозирует он.

«Уже сегодня автономные капсулы передвигаются по пищеварительной системе, давая изображение в режиме онлайн. Они же зачастую являются исполнительными механизмами. Кровеносная система осваивается сейчас. Расширение зоны проникновения в сосуды от более крупного сечения к более мелкому – это то, что мы наблюдаем ежедневно», – поясняет он.

«Можно надеяться, что через 5 лет врач будет не только ставить диагноз, выписывать электронный рецепт на медикаменты, но и рекомендовать пациенту наиболее подходящее мобильное приложение, – уверен Антипов. – Врач сможет предлагать услугу персонального мониторинга с использованием носимого медицинского измерительного устройства, не изменяющего привычное качество жизни, но при этом осуществляющего контроль целого набора значимых физиологических параметров организма».

XXI век явно становится веком медицины, оптимистично полагает Евгений Паперный. По его прогнозу, в течение года в России будет принят закон о телемедицине. Через пять лет появится дистанционная доставка лекарств, лицензирование врачей, облегчающее частную практику, а до 20% медицинских услуг будут оказываться дистанционно (в пределе около 60% будет дистанционно). «За рубежом через пять – десять лет любое медицинское решение и назначение будет проверяться и поддерживаться системами искусственного интеллекта, а мониторингом (постоянным!) состояния здоровья будут заниматься большие роботы и маленькие гаджеты», – ожидает Паперный.

Похожие публикации