Нормальное цветовое зрение. Цветное зрение обеспечивают. Биофизика цветового зрения

1047 06.03.2019 5 мин.

Зрение – одно из важнейших чувств для восприятия окружающего мира. С помощью него мы видим объекты и предметы вокруг нас, можем оценить их размеры и форму. Если верить исследованиям, при помощи зрения мы получаем не менее 90% информации об окружающей реальности. За цветное зрение отвечает несколько зрительных компонентов, что позволяет более точно и правильно передавать изображение объектов в головной мозг для дальнейшей обработки информации. Существует несколько патологий нарушения передачи цветов, которые существенно ухудшают взаимодействие с миром и снижают качество жизни в целом.

Как устроен орган зрения?

Глаз представляет собой сложную оптическую систему, которая состоит из множества элементов, связанных между собой. Восприятие различных параметров окружающих объектов (величина, удалённость, форма и другие) обеспечивает периферическая часть зрительного анализатора, представленная глазным яблоком. Это орган шаровидной формы с тремя оболочками, который имеет два полюса – внутренний и внешний. Глазное яблоко размещено в защищенной с трех сторон костной впадине – глазнице или орбите, где окружено тонкой жировой прослойкой. Спереди находятся веки, необходимые для защиты слизистой оболочки органа и его очистки. Именно в их толще находятся железы, необходимые для постоянного увлажнения глаз и беспрепятственной работы смыкания и размыкания непосредственно век. Движение глазного яблока обеспечивают 6 разных по функциям мышц, что позволяет выполнять содружественные действия этого парного органа. Помимо этого глаз соединен с кровеносной системой разными по величине многочисленными кровеносными сосудами, а с нервной системой – несколькими нервными окончаниями.

Особенность зрения в том, что мы не видим непосредственно объект, а лишь лучи, отражающиеся от него . Дальнейшая обработка информации происходит в головном мозге, точнее его затылочной части. Лучи света изначально поступают на роговицу, а затем переходят на хрусталик, стекловидное тело и сетчатку. За восприятие лучей света отвечает естественная линза человека – хрусталик, а за его восприятие ответственна светочувствительная оболочка – сетчатка. Она имеет сложное строение, в котором выделяют 10 различных слоев клеток. Среди них особенно важными являются колбочки и палочки, которые неравномерно распределены по всему слою. Именно колбочки являются необходимым элементом, который отвечает за цветовое зрение человека.

Наибольшая концентрация колбочек отмечается в центральной ямке – воспринимающей изображения области в желтом пятне. В ее пределах плотность колбочек достигает 147 тыс. на 1 мм 2 .

Цветовое восприятие

Человеческий глаз является самой сложной и совершенной зрительной системой среди всех млекопитающих. Он способен воспринимать более 150 тыс. различных цветов и их оттенков. Восприятие цвета возможно благодаря колбочкам – специализированным фоторецепторам, расположенным в желтом пятне . Вспомогательную роль выполняют палочки – клетки, отвечающие за сумеречное и ночное зрение. Воспринимать весь цветовой спектр возможно с помощью всего трех видов колбочек, каждый их которых восприимчив к определенному участку цветовой гаммы (зеленый, синий и красный) за счет содержания в них йодопсина. У человека с полноценным зрением имеется 6-7 млн. колбочек, а если их количество меньше или имеются патологии в их составе, возникают различные нарушения цветовосприятия.

Строение глаза

Зрение мужчины и женщин существенно отличается. Доказано, что женщины способы распознавать больше различных оттенков цветов, в то время как представители сильного пола обладают лучшей способностью распознавать движущиеся предметы и дольше удерживать концентрацию на конкретном объекте.

Отклонения цветового зрения

Аномалии цветового зрения – редкая группа офтальмологических нарушений, которая характеризуется искажением восприятия цветов. Практически всегда эти заболевания передаются по наследству по рецессивному типу. С физиологической точки зрения все люди являются трихроматами – для полного различения цвета используют три части спектра (синий, зеленый и красный), но при патологии нарушается пропорция цветов или какой-то из них полностью или частично выпадает. Дальтонизм является лишь частным случаем патологии, при котором наблюдается полная или частичная слепота к какому-либо цвету.

Выделяют три группы аномалий цветового зрения:

  • Дихроматизм или дихромазия . Патология заключается в том, что для получения любого цвета используются только два участка спектра. Существует , в зависимости от выпадающего участка цветовой палитры. Наиболее часто встречается дейтеранопия – невозможность воспринимать зеленый цвет;
  • Полная цветовая слепота . Встречается лишь у 0,01% всех людей. Существует две разновидности патологии: ахроматопсия (ахромазия) , при которой полностью отсутствует пигмент в колбочках на сетчатке, а любые цвета воспринимаются как оттенки серого, и колбочковая монохромазия – разные цвета воспринимаются одинаково. Аномалия является генетической и связана с тем, что в составе цветовых фоторецепторов вместо йодопсина содержится родопсин;

Любые цветовые отклонения являются причиной множества ограничений, например, для вождения транспортных средств или службы в армии. В некоторых случаях аномалии цветовосприятия являются поводом получения инвалидности по зрению.

Определение и виды дальтонизма

Одна из самых частых патологий восприятия цвета, которая имеет генетическую природу или развивается на фоне . Существует полная (ахромазия) или частичная невозможность (дихромазия и монохромазия) воспринимать цвета, подробнее патологии описаны выше.

Традиционно выделяют несколько видов дальтонизма в форме дихромазии, в зависимости от выпадения участка цветового спектра.

  • Протанопия . Возникает цветовая слепота красного участка спектра, встречается у 1% мужчин и у менее 0,1% женщин;
  • Дейтеранопия . Из воспринимаемой гаммы цветов выпадает зеленый участок спектра, встречается чаще всего;
  • Тританопия . Невозможность различать оттенки цветов сине-фиолетовой гаммы, плюс к этому нередко наблюдается отсутствие сумеречного зрения из-за нарушений работы палочек.

Отдельно выделяют трихромазию. Это редкий вид дальтонизма, при котором человек различает все цвета, но из-за нарушения концентрации йодопсина происходит искажение цветовосприятия. Особенную сложность люди с этой аномалией испытывают при интерпретации оттенков. Кроме того, нередко наблюдается эффект гиперкомпенсации при этой патологии, например, при невозможности отличить зеленый и красный цвет возникает улучшенное различение оттенков цвета хаки.

Виды дальтонизма

Аномалия носит имя Дж. Дальтона, который описал заболевание еще в 18 веке. Большой интерес к болезни связан с тем, что сам исследователь и его братья страдали от протанопии.

Тест на определение дальтонизма

В последние годы для определения аномалий цветовосприятия применяются , которые представляют собой изображения цифр и фигур, нанесенные на подобранный фон при помощи различных по диаметру кругов. Всего разработано 27 картинок, каждая из которых имеет определённую цель. Плюс к этому, в стимульном материале имеются специальные изображения для выявления симулирования заболевания, поскольку тест является важным при прохождении некоторых профессиональных медицинских комиссий и при постановке на воинский учет. Интерпретацию теста должен проводить только специалист, поскольку анализ результатов – довольно сложный и трудоемкий процесс.

Считается, что можно использовать только распечатанные карточки, так как на мониторе или экране может происходить искажение цветов.

Видео

Выводы

Зрение человека – сложный и многогранный процесс, за который отвечает множество элементов. Любые аномалии восприятия окружающего мира не только снижают качество жизни, но могут быть угрозой для жизни в некоторых ситуациях. Большинство зрительных патологий являются врожденными, поэтому при диагностировании у ребенка отклонения нужно не только пройти необходимое лечение и грамотно подобрать корректирующую оптику, но и научить его жить с этой проблемой.

ЦВЕТОВОЕ ЗРЕНИЕ (синоним: цветоощущение, цветоразличение, хроматопсия ) - способность человека различать цвет видимых объектов.

Цвет оказывает воздействие на общее психофизиологическое состояние человека и в известной мере влияет на его трудоспособность. Поэтому большое значение придают цветовому оформлению помещений, оборудования, приборов и других предметов, окружающих людей на производстве и в быту. Наиболее благоприятное влияние на зрение оказывают малонасыщенные цвета средней части видимого спектра (желто-зелено-голубые), так называемые оптимальные цвета. Для цветовой сигнализации используют, наоборот, насыщенные (предохранительные) цвета.

Цвет - свойство света вызывать определенное зрительное ощущение в соответствии со спектральным составом отражаемого или испускаемого излучения. Различают семь основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. В зависимости от длины волны света выделяют три группы цветов: длинноволновую (красный, оранжево-красный, оранжевый), средневолновую (желтый, желто-зеленый, зеленый) и коротковолновую (голубой, синий, фиолетовый).

Цвета разделяют на хроматические и ахроматические. Хроматические цвета обладают тремя основными качествами: цветовым тоном,который зависит от длины волны светового излучения; насыщенностью, зависящей от доли основного цветового тона и примесей других цветовых тонов; яркостью цвета, то есть степенью близости его к белому цвету. Различное сочетание этих качеств дает большое разнообразие оттенков хроматического цвета. Ахроматические цвета (белый, серый, черный) различаются лишь яркостью.

При смешении двух спектральных цветов с разной длиной волны образуется результирующий цвет. Каждый из спектральных цветов имеет дополнительный цвет, при смешении с которым образуется ахроматический цвет - белый или серый. Многообразие цветовых тонов и оттенков может быть получено оптическим смешением всего трех основных цветов - красного, зеленого и синего. Количество цветов и их оттенков, воспринимаемых глазом человека, необычайно велико и составляет несколько тысяч.

Физиология цветового зрения недостаточно изучена. Из предложенных гипотез и теорий цветовое зрение наибольшее распространение получила трехкомпонентная теория, основные положения которой впервые были высказаны М. В. Ломоносовым в 1756 году. В дальнейшем эти положения были подтверждены и развиты Юнгом (Т. Young, 1802) и Г. Гельмгольцем (1866). Согласно трехкомпонентной теории Ломоносова - Юнга - Гельмгольца в сетчатке глаза имеется три воспринимающих аппарата (рецептора, элемента), которые возбуждаются в разной степени под действием световых раздражителей различной длины волны (спектральная чувствительность глаза). Каждый вид рецептора возбуждается преимущественно одним из основных цветов - красным, зеленым или синим, однако в определенной степени реагирует и на другие цвета. Поэтому кривые спектральной чувствительности отдельных видов цветовоспринимающих рецепторов частично накладываются друг на друга. Изолированное возбуждение одного вида рецептора вызывает ощущение основного цвета. При равном раздражении всех трех видов рецепторов возникает ощущение белого цвета. В глазу происходит первичный анализ спектра излучения рассматриваемых предметов с раздельной оценкой участия в них красной, зеленой и синей областей спектра. В коре головного мозга происходит окончательный анализ и синтез светового воздействия, которые осуществляются одновременно. Благодаря такому устройству зрительного анализатора человек может достаточно хорошо различать множество цветовых оттенков.

Трехкомпонентную теорию цветового зрения подтверждают данные морфофизиологических исследований. Спектрофотометрические исследования позволили определить спектры поглощения различных типов одиночных фоторецепторных клеток. По данным Доу (N. W. Daw, 1981), зрительные пигменты (см.) колбочек сетчатки человека имеют следующие максимумы спектров поглощения: красночувствительные - 570-590 нм, зеленочувствительные - 535 - 555 нм и синечувствительные - 440-450 нм. Современные электрофизиологические исследования органа зрения, проведенные Л. П. Григорьевой и А. Е. Фурсовой (1982), также подтвердили трехкомпонентную теорию цветового зрения. Они показали, что каждому из трех цветовых раздражителей соответствует определенный вид биопотенциала сетчатки и зрительной области коры головного мозга.

Имеются также другие теории цветового зрения, не получившие, однако, широкого признания. По оиионентной теории цветового зрения Геринга выделяют три пары противоположных цветов: красный и зеленый, желтый и синий, белый и черный. Каждой паре цветов в сетчатке соответствуют особые - красно-зеленое, желто-синее и бело-черное вещества. Под действием света происходит разрушение этих веществ (диссимиляция), а в темноте - восстановление (ассимиляция). Различные сочетания процессов диссимиляции и ассимиляции создают многообразие цветовых впечатлений. Теория Геринга не объясняет ряд явлений, в частности расстройства цветового зрения. Ионная теория Лазарева (1916) связывает цветовосприятие с выделением ионов, возбуждающих цветоразличительные рецепторы. По его теории в колбочках сетчатки содержится три светочувствительных вещества: одно из них поглощает преимущественно красный свет, другое - зеленый, третье - синий; при поглощении света данные вещества распадаются с выделением ионов, которые возбуждают цветоразличительные рецепторы. Полихроматическая теория Хартриджа предполагает наличие семи типов рецепторов.

У человека различают ночное, или скотопическое, зрение, сумеречное, или мезопическое, и дневное, или фотопическое, зрение (см.). Это обусловлено прежде всего наличием в сетчатке (см.) глаза человека двух видов фоторецепторов - колбочек и палочек, что послужило основой для обоснования теории двойственности зрения, выдвинутой Шультце (М. J. Schultze, 1866) и в дальнейшем развитой М. М. Воиновым (1874), Парино (H. Pari-naud, 1881) и Крисом (J. Kries, 1894). Колбочки располагаются, главным образом, в центральном отделе сетчатки и обеспечивают фотопическое зрение - воспринимают форму и цвет объектов, находящихся в поле зрения; палочки располагаются в периферическом отделе, обеспечивают скотопическое зрение и обнаруживают слабые световые сигналы на периферии поля зрения.

Максимум спектральной чувствительности для колбочек находится в зоне 556 нм, а для палочек - в зоне 510 нм. Этим различием в спектральной чувствительности колбочек и палочек объясняется феномен Пуркинье, заключающийся в том, что в условиях слабого освещения зеленые и синие цвета кажутся светлее красных и оранжевых, в то время как в условиях дневного освещения эти цвета по светлоте примерно одинаковы.

На восприятие цвета оказывает влияние сила цветового раздражителя и цветовой контраст. Для цветоразличения имеет значение яркость (светлота) окружающего фона. Черный фон усиливает яркость цветных полей, так как они выглядят более светлыми, но в то же время несколько ослабляет цвет. На цветовосприятие объектов существенно влияет также цветность окружающего фона. Фигуры одного и того же цвета на желтом и синем фоне выглядят по-разному. Это явление одновременного цветового контраста.

Последовательный цветовой контраст проявляется в видении дополнительного цвета после воздействия на глаз основного цвета. Например, после рассматривания зеленого абажура лампы белая бумага первое время кажется окрашенной в красноватый цвет. При длительном воздействии цвета на глаз отмечается снижение цветовой чувствительности, вследствие цветового «утомления» сетчатки, вплоть до такого состояния, когда два разных цвета воспринимаются как одинаковые. Это явление наблюдается у лиц с нормальным цветовым зрением и является физиологическим. Однако при поражении желтого пятна сетчатки, невритах и атрофии зрительного нерва явления цветового утомления наступают быстрее.

В соответствии с трехкомпонентной теорией цветового зрения нормальное цветоощущение называется нормальной трихромазией, а лица с нормальным цветовым зрением - нормальными трихроматами. Количественно цветовое зрение характеризуется порогом цветоощущения, то есть наименьшей величиной (силой) цветового раздражителя, воспринимаемого как определенный цвет.

Нарушения цветового зрения

Нарушения цветового зрения могут быть врожденными и приобретенными. Врожденные расстройства цветового зрения наблюдаются чаще у мужчин. Эти нарушения, как правило, стабильны и выявляются в обоих глазах, чувствительность чаще понижена к красному или зеленому цветам. В связи с этим к группе с начальными нарушениями цветового зрения относят лиц, хотя и различающих все главные цвета спектра, но имеющих пониженную цветовую чувствительность, то есть повышенные пороги цветоощущения.

Классификация врожденных расстройств цветового зрения Криса - Нагеля предусматривает три вида нарушений цветового зрения: 1 - аномальная трихромазия, 2 - дихромазия, 3 - монохромазия. В зависимости от длины волны светового раздражителя и его расположения в спектре, цветовоспринимающие рецепторы обозначают греческими словами: красный - протос (первый), зеленый - дейтерос (второй), синий - тритос (третий). В соответствии с этим при аномальной трихромазии различают ослабление восприятия основных цветов: красного - протаномалия, зеленого - дейтеранохмалия, синего - тританомалия. Дихромазия характеризуется более глубоким нарушением цветового зрения, при котором полностью отсутствует восприятие одного из трех цветов: красного(протанопия), зеленого (дейтеранопия) или синего (тританопия). Монохромазия (ахромазия, ахроматопсия) означает отсутствие цветового зрения, цветовую слепоту; при этом сохраняется лишь черно-белое восприятие. В дополнение к этой классификации Е. Б. Рабкиным (1937) при протаномалии и дейтераномалии выделены три степени (типа) нарушений цветового зрения: резкое нарушение - тип А, умеренное - тип В и легкое - тип С.

Врожденные расстройства цветового зрения принято называть дальтонизмом, по имени английского ученого Дж. Дальтона, страдавшего нарушением восприятия красного цвета и описавшего это явление.

Наиболее частым среди врожденных расстройств цветового зрения (до 70%) является аномальная трихромазия. Врожденные нарушения цветового зрения не сопровождаются расстройством других зрительных функций. Лица с врожденным расстройством цветового зрения обычно не предъявляют жалоб, а нарушения цветового зрения выявляются лишь при специальном исследовании.

Приобретенные расстройства цветового зрения встречаются при заболеваниях сетчатки (см.), зрительного нерва (см.) или центральной нервной системы; они могут наблюдаться в одном или обоих глазах, обычно сопровождаются нарушением восприятия всех 3-х цветов, протекают в сочетании с другими расстройствами зрительных функций. Приобретенные расстройства цветового зрения могут проявляться в виде ксантопсии (см.), цианопсии и эритропсии (см.). Ксантопсия - видение предметов в желтом цвете, наблюдается при желтухе, отравлении некоторыми веществами и лекарственными средствами (пикриновая кислота, сантонин, акрихин, амилнитрит). Цианопсия - восприятие предметов в синем цвете, наблюдается после удаления катаракты (см.). Эритропсия - нарушение зрительного восприятия, при котором видимые предметы представляются окрашенными в красноватый цвет. Наблюдается у лиц с нормальным цветовосприятием в результате длительной фиксации глаза на ярком, богатом УФ-лучами источнике света, а также после операции удаления катаракты. В отличие от врожденных нарушений цветового зрения, которые постоянны, цветовое зрение, измененное в результате перечисленных выше заболеваний, нормализуется по мере их излечения.

Поскольку ряд профессий требует сохранения нормального цветоощущения, например у лиц, занятых на всех видах транспорта, в некоторых отраслях промышленности, военнослужащих отдельных родов войск, им проводят обязательное исследование цветового зрения. С этой целью применяют две группы методов - пигментные и спектральные. К пигментным относят исследования с помощью цветных (пигментных) таблиц и различных тест-объектов (наборы разноцветных мотков шерсти, кусочков картона и др.), к спектральным - исследование с помощью спектральных аномалоскопов. Принцип исследования цветового зрения с помощью цветных таблиц был предложен Штиллингом (J. Stilling). Из цветных таблиц наибольшее распространение получили полихроматические таблицы Рабкина. Основная группа таблиц предназначена для дифференциальной диагностики форм и степени врожденных расстройств цветового зрения и отличия их от приобретенных; контрольная группа таблиц - для уточнения диагноза в сложных случаях. В таблицах среди фоновых кружочков одного цвета имеются кружочки одинаковой яркости, но другого цветового тона, составляющие какую-либо цифру или фигуру, легко различимую нормально видящими. Лица с расстройством цветового зрения не отличают цвет этих кружочков от цвета кружочков фона и поэтому не могут различить предъявляемых им фигурных или цифровых изображений (цветн. рис. 1-2). Таблицы Исихары служат для той же цели, с их помощью выявляют цветовую слепоту на красный и зеленый цвета.

Более тонким методом диагностики расстройств цветового зрения является аномалоскопия - исследование с помощью специального прибора - аномалоскопа. В СССР серийно выпускаемым прибором является аномалоскоп АН-59 (рис.).За рубежом для исследования цветового зрения имеет распространение аномалоскоп Нагеля.

Принцип работы прибора основан на трехкомпонентности цветового зрения. Сущность метода заключается в уравнении цвета двухцветных тестовых полей, из которых одно освещается монохроматическим желтым цветом, а второе, освещаемое красным и зеленым, может менять цвет от чистокрасного до чисто-зеленого. Обследуемый должен подобрать путем оптического смешения красного и зеленого желтый цвет, соответствующий контрольному (уравнение Релея). Человек с нормальным цветовым зрением правильно подбирает цветовую пару смешением красного и зеленого. Человек с нарушением цветового зрения с этой задачей не справляется. Метод аномалоскопии позволяет определить порог (остроту) цветового зрения раздельно для красного, зеленого, синего цвета, выявить нарушения цветового зрения, диагностировать цветоаномалии.

Степень нарушения цветоощущения выражается коэффициентом аномальности, который показывает соотношение зеленого и красного цветов при уравнении контрольного поля прибора с тестовым. У нормальных трихроматов коэффициент аномальности колеблется от 0,7 до 1,3, при протаномалии он составляет меньше 0,7, при дейтераномалии - больше 1,3.

Спектральный аномалоскоп Рабкина позволяет исследовать цветовое зрение во всех частях видимого спектра. С помощью прибора возможно определение как врожденных, так и приобретенных расстройств цветового зрения, порогов цветоразличения и степени функциональной устойчивости цветового зрения.

Для диагностики нарушений цветового зрения используют также стооттеночный тест Фарнсуорта - Мензелла. Тест основан на плохом различении цвета протанопами, дейтеранопами и тританопами в определенных участках цветового круга. От испытуемого требуется расположить в порядке оттенков ряд кусочков картона разного цвета в виде цветового круга; при нарушении цветового зрения кусочки картона располагаются неправильно, то есть не в том порядке, в каком они должны следовать друг за другом. Тест обладает высокой чувствительностью и дает информацию о типе нарушения цветового зрения. Используется также упрощенный тест Фарнсуорта, состоящий из 15 цветных тест-объектов.

Библиогр.: Кравков С. В. Цветовое зрение, М., 1951, библиогр.; Многотомное руководство по глазным болезням, под ред. В. Н. Архангельского, т. 1, кн. 1, с. 425, М., 1962; ПэдхемЧ. и Сон-дер с Д ж. Восприятие света и цвета, пер. с англ., М., 1978; Сенсорные системы, Зрение, под ред. Г. В. Гершуни и др.,с. 156, JI., 1982; С о к о л о в E. Н. и И з м а й л о в Ч. А. Цветовое зрение, М., 1984, библиогр.; Adler’s physiology of the eye, ed. by R. A. Moses, p. 545, St Louis a. o., 1981; H u r v i с h L. M. Color vision, Sunderland, 1981; System of ophthalmology, ed. by S. Duke-Elder, v. 4, p. 617, L.* 1968.

А. А. Яковлев-Будников.

Профессор Е. Рабкин

На протяжении многих лет в единственной в нашей стране Лаборатории цветового зрения Всесоюзного научно-исследовательского института железнодорожной гигиены под руководством доктора медицинских наук профессора Е. Б. Рабкина разрабатываются проблемы, связанные с особенностями цветоразличительной функции зрительной системы человека.

Слева - репродукция с картины известного художника Ганса Гольбейна, справа - копия с репродукции этой же картины, выполненная художником, страдающим нарушением цветовосприятия (преимущественно красного цвета).

На графике показаны кривые зависимости влияния различных характеристик цвета на зрительно-нервный аппарат человека.

Наш корреспондент А. Быков попросил профессора Е. Б. Рабкина познакомить читателей журнала с историей науки о цвете, рассказать о причинах нарушения цветового зрения у человека.

Вопрос. Великий поэт Гёте писал: «Люди в общем очень радуются цветам. Глаз чувствует потребность их видеть... Вспомним о том приятном оживлении, которое мы испытываем, когда в пасмурный день лучи солнца упадут на часть видимого пейзажа и цвета освещенных предметов делаются для нас хорошо видимыми».

Где и когда возникла наука о цвете?

Ответ. Учение о цвете зародилось в Элладе. Еще Эмпедокл, философ и проповедник V века до нашей эры, высказывал мысли о существовании основных цветов. По его мнению, их было четыре: красный и желтый, белый, черный, что соответствовало «четырем основным элементам», установленным им же: огонь, земля, воздух, вода. Зрение Эмпедокл объяснял так. Он считал, что из глаза «истекают» потоки мелких частиц. Когда они встречаются, возникает зрительное ощущение, в том числе и цветовое.

В I веке до нашей эры Демокрит предпринял попытку объяснить природу отдельных цветов, используя свою атомную теорию. Он также признавал четыре основных цвета.

Учению о цвете придавали большое значение и Платон и его ученик Аристотель. А небольшой трактат «О цветах», авторство которого точно не установлено (оно приписывается Аристотелю или его ученику Теофрасту), хотя и не сыграл большой роли в теории цветоощущения, все же содержит ряд интересных и значительных мыслей.

Гениальный итальянский художник и ученый эпохи Возрождения Леонардо да Винчи, считавший глаз важнейшим из всех органов чувств, писал: «Глаз есть окно человеческого тела, через которое он глядит на свой путь и наслаждается красотою мира».

Сегодня исследователями "Наиболее принята трехкомпонентная теория, согласно которой в нашей зрительной системе существуют три цветоощущающих аппарата, которые реагируют на различные цвета и дают нам возможность их видеть.

Впервые основные идеи трехкомпонентной теории цветового зрения были высказаны М. В. Ломоносовым в его знаменитом сочинении «Слово о происхождении света, новую теорию о цветах представляющее: в публичном собрании Императорской Академии наук июля 1 дня 1756 года говоре иное...». Великий русский ученый считал, что причиной света является движение эфира, состоящего из частиц трех видов различных размеров. Частицы эфира могут совмещаться с частицами материи, из которых состоит «дно» глаза, и приводить их в «коловратное» движение. При этом «от первого рода эфира происходит цвет красной, от второго желтой, от третьего голубой. Прочие цвета рождаются от смешения первых».

К трехкомпонентной теории цветового зрения пришел и Томас Юнг. В 1801 году он писал: «В настоящее время, когда почти невозможно представить себе, что каждая чувствительная точка сетчатки содержит бесчисленное множество составных частиц, способных вибрировать в унисон с каждым возможным световым колебанием, мы приходим с необходимостью к предположению о существовании ограниченного числа рецепторов сетчатки, воспринимающих, например, такие основные цвета, как красный, желтый и синий...». В более поздних работах он остановился на трех «основных» цветах: красном, зеленом и фиолетовом. Опытным путем Юнг обнаружил, что любой видимый в спектре цвет может быть получен смешением не менее трех световых лучей (см. рисунок). Дальнейшее развитие трехкомпонентная теория цветового зрения получила в работах крупнейшего немецкого естествоиспытателя Г. Гельмгольца.

Таким образом, согласно теории Ломоносова - Юнга - Гельмгольца, существуют три типа цветочувствительных элементов, реагирующих на красный, зеленый и синий (фиолетовый) цвета. Каждый вид этих рецепторов возбуждается преимущественно одним из основных цветов, реагируя частично и на другие. Ощущение «неосновных» цветов возникает при смешении сигналов трех рецепторных систем, а ощущение белого цвета-при равномерном раздражении этих сигналов.

Вопрос. В 1666 году Ньютон, пропуская солнечный луч через трехгранную призму из стекла, впервые наблюдал образование спектральной полосы, состоящей из гаммы определенных цветов. Было установлено, что белый цвет неоднороден, это смесь нескольких цветов. Существует ли четкая классификация цветов?

Ответ. Все множество цветов подразделяется на две группы: ахроматические и хроматические.

К ахроматическим относятся белый цвет, черный и серый со всеми своими многочисленными оттенками (их более трехсот). Все остальные цвета - хроматические.

Ахроматические цвета можно представить себе расположенными на прямой, цвет которой постепенно изменяется от белого до черного. Друг от друга они разнятся только по одному признаку - яркости или светлоте.

Хроматическим цветам присуща уже не одна, а несколько характеристик. Они обладают, кроме светлоты, еще цветовым тоном и насыщенностью. К основным световым тонам относятся семь цветов солнечного спектра. Цветовой тон определяется длиной световой волны. Так, красный цвет - длинноволновой, зеленый - средневолновой, а фиолетовый - коротковолновой. Насыщенность хроматического цвета зависит от степени «разбавления» его белым. (Это свойство можно проследить на примере неравномерно выгоревшей на солнце материи.) Смещение трех основных цветов в различных соотношениях определяет все многообразие оттенков.

Указав цветовой тон, насыщенность и светлоту, можно математически точно обозначить любой из всего множества окружающих нас цветов.

Вопрос. Известно, что цвет играет большую роль в жизни человека. Движение транспорта регулируется сигналами различных цветов; характер окраски микроорганизмов играет большую роль в диагностировании того или иного заболевания; правильный подбор оттенков имеет первостепенное значение в красильной, ткацкой и полиграфической промышленности... Одним словом, знание цветовых характеристик необходимо для многих отраслей науки и техники. Каковы методы их определения?

Ответ. Цветовые характеристики определяются сложными приборами: колориметрами и спектрофотометрами. Однако более распространенный метод измерения цвета с помощью специальных атласов.

Атласов цветов много, но наибольшее признание получил атлас с колориметрированными образцами цветов, разработанный в нашей лаборатории. Для измерения цветности в атласе подбирается тождественный цветовой тон, а затем по специальным таблицам находят основные характеристики цвета.

Пользуясь атласом, измерение цвета необходимо проводить на ахроматическом фоне (серый, черный, белый и все их оттенки). Это позволяет избежать резких контрастов, отражающихся на правильном восприятии цвета. Наблюдать это можно, поместив образцы, к примеру, желтой бумаги на фоны разных хроматических цветов. На красном фоне желтое поле покажется зеленоватым, на зеленом - оранжевым.

Вопрос. Согласно данным исследователей различных стран, в мире сейчас насчитывается более ста миллионов человек, страдающих расстройствами цветового зрения. Когда впервые было обнаружено, что цветовое зрение может быть нарушено?

Ответ. Первым в мире описал странные явления, происходящие с его зрением, английский физик и химик Джон Дальтон. Если он достаточно легко и точно мог различать ахроматические цвета, а также синий, то восприятие красного и в несколько меньшей степени зеленого цветов его очень затрудняло. В 1794 году Дальтон сделал в Манчестере доклад о собственном недостатке цветового зрения - цветовой слепоте. В 1798 году доклад был напечатан и стал одной из основных работ по изучению врожденного цветового расстройства, названного в 1827 году дальтонизмом.

Нарушение цветового зрения может иметь серьезные последствия. Так, в 1875 году в Лагерлунде (Швеция) произошло крушение поезда, которое повлекло за собой много человеческих жертв. Причина катастрофы казалась необъяснимой. Действительно, как мог машинист повести состав на красный сигнал семафора? Ответил на этот вопрос физиолог, известный шведский ученый Гольмгрен. Показав оставшемуся в живых машинисту мотки цветной шерсти, он установил, что тот страдал расстройством цветового зрения, его глаза не воспринимали различий между красным и зеленым цветами. Это несчастье и послужило поводом к введению обязательной проверки цветового зрения у работников всех видов транспорта.

Вопрос. Каковы способы исследования недостатков цветового зрения?

Ответ. Еще в 1837 году Август Зеебек для изучения особенностей восприятия цвета использовал набор 300 самых разнообразных предметов, различных по цветовому тону и насыщенности. Упоминавшийся ранее набор Гольмгрена состоял только из однородных предметов - 133 мотков цветной шерсти.

В дальнейшем для определения цветовой слепоты применяли испытательные таблицы, на которых среди пятен одного цвета были помещены пятна другого цвета, образующие для нормально видящего цифру или фигуру. Люди с нарушенным цветовым восприятием не могут отличить цвет фигур или цифр от цвета фона. (Впервые такие таблицы были предложены в 1876 году немецким ученым Штиллингом.)

В нашей стране, да и за рубежом, широко применяются разработанные нами «Полихроматические таблицы для исследования цветоощущения». Они выдержали уже 9 изданий. Особенность этих таблиц заключается в том, что с их помощью можно не только констатировать наличие цветового расстройства, но и получить также полное представление о его форме и степени, что имеет важное теоретическое и практическое значение. Кстати, эти таблицы хорошо знакомы каждому, кто проходил медицинское освидетельствование для получения водительских прав.

Помимо таблиц, существуют специальные приборы для исследования цветового зрения - спектральные аномалоскопы. Первый аномалоскоп был создан еще в 1907 году немецким ученым Нагелем.

В нашей лаборатории разработан спектральный аномалоскоп - АСР, который определяет абсолютные пороги цветочувствительности, устанавливает степень функциональной устойчивости цветового зрения, исследует контрастную чувствительность и цветоразличительную способность человеческого глаза.

Вопрос. Каковы современные представления о типах расстройства цветоощущения и кто наиболее им подвержен?

Ответ. Нарушения цветовосприятия могут быть врожденными и приобретенными. Врожденное расстройство относительно стабильно, оно передается по наследству через поколение (от деда внуку) и касается почти исключительно красного и зеленого цветов. Приобретенное расстройство возникает вследствие заболеваний зрительно-нервного аппарата центральной нервной системы и может касаться всех основных цветов. Так, при отслоении сетчатки преподносит «сюрпризы» синий цвет. К приобретенному расстройству цветоощущения могут привести травмы, опухоли глаза и головного мозга.

Наиболее редко встречаются случаи полной цветовой слепоты, или монохромазии. Лица, подверженные монохромазии, воспринимают мир как черно-белую фотографию.

Значительное распространение имеют формы аномальной трихромазии и дихромазии. При аномальной трихромазии понижается восприятие либо преимущественно красного (протаномалия), либо зеленого (дейтераномалия). При дихромазии - частичной цветовой слепоте (в зависимости от восприятия цвета называемой протанопией и дейтеранопией) - расстройства цветового зрения выражены значительно резче.

Согласно предложенной нами классификации степеней расстройств, протаномалия и дейтераномалия делятся на типы: А - высокая, В - средняя, С - низкая степень аномалии.

Врожденное расстройство цветовосприятия встречается приблизительно у 8-10% мужчин, у женщин же наблюдается значительно реже - всего около 0,5%.

В 1931 году на Международном конгрессе офтальмологов немецкий ученый Энгелькинг сделал сенсационное сообщение. Он установил, что явления, аналогичные дальтонизму, наблюдаются у 42 процентов людей в состоянии утомления. Гипотезу Энгелькинга подтвердили и другие ученые. Действительно, при рассмотрении на спектральном аномалоскопе двух образцов различного цвета испытуемый через некоторый промежуток времени перестает различать эти цвета, попросту говоря, они сливаются.

Нам удалось доказать, что в своих исследованиях Энгелькинг не учел фактора времени. Дело в том, что при длительном наблюдении зрительная система утомляется, и наступает фаза временного неразличения цвета. Этот эффект получил название адиcпаропии, что в переводе означает «неразличение неравенства». Адиспаропия проявляется по-разному. Так, у людей с нормальным зрением она наступает медленнее, чем у людей, страдающих близорукостью. Достаточно точно момент появления адиспаропии можно определить при помощи аномалоскопа. Явление это носит временный характер благодаря колоссальным компенсаторным возможностям нашей зрительной системы.

Вопрос. XX век принято называть веком скоростей. Увеличение быстроты передвижения значительно увеличивает объем зрительной информации и требует улучшения цветовой сигнализации. В связи с этим возникает вопрос: как повысить цветоразличительную функцию зрительного анализатора?

Ответ. Длительные исследования, проведенные в нашей лаборатории, показали, что лучше всего стимулируют цветоразличительную функцию некоторые биологические вещества растительного происхождения. Это женьшень, лимонник китайский и элеутерококк. Эти препараты значительно повышают спектральную и контрастную чувствительность глаза и соответственно улучшают в 2,5-5,5 раза устойчивость восприятия красного и зеленого цветов, что особенно важно для лиц, деятельность которых связана с различием цветовых сигналов.

Особенно эффективен элеутерококк. Препарат действует в течение 29-33 часов. (Этого времени вполне достаточно, например, для самого длительного воздушного перелета.)

Аналогичное эффективное воздействие оказывают биологически активные вещества и на людей, страдающих врожденным расстройством цветового зрения.

По данным различных ученых, около 90 процентов информации человек получает с помощью зрительно-нервного аппарата. Установлено также, что около 80 процентов всех рабочих операций в значительной мере связаны со зрительным контролем. Цветовая среда оказывает и существенное влияние на психофизиологическое состояние человека, его работоспособность. Эксперименты, проведенные в ГДР, показали, что только за счет оптимальной окраски рабочих мест можно увеличить производительность труда более чем на 25 процентов.

Доказано, что цвета средневолновой зоны спектра (зеленый, желтый и их оттенки), а также белый цвет больше всего стимулируют функциональную способность зрительного анализатора, уменьшая утомление и повышая уровень устойчивости зрения. И наоборот, высокая степень чистоты цвета, то есть большая его насыщенность, особенно для крайних участков спектра, утомляет зрительно-нервный аппарат человека.

Результаты обширных исследований по изучению воздействий различных характеристик цвета на человека, проведенных в нашей лаборатории за последние годы, легли в основу подготавливаемого в настоящее время к печати проекта Государственного стандарта СССР «Гамма цветов для цветового оформления объектов народного хозяйства». Цель этого стандарта - создание оптимальной цветовой среды на производстве и в быту.

В ГОСТе на основе научно обоснованных физиолого-гигиенических принципов выделены две основные группы цветов: оптимальная и субоптимальная, а также и третья группа, включающая серию предупреждающих цветов.

Оптимальные цвета - основные. К ним относятся цвета средневолновой части спектра и группы оттенков, близко к ней расположенных. Оптимальными цветами окрашивается все, что нуждается в цветовом оформлении.

К субоптимальным цветам отнесены цветовые оттенки той же средневолновой зоны спектра и расположенные за ее пределами. Это предупреждающие цвета. Они применяются главным образом для облегчения распознавания тех объектов, обращение с которыми может привести к травматизму.

Введение нового ГОСТа обеспечит создание оптимальной цветовой среды, в значительной мере улучшит условия труда.

В зрительном анализаторе допускается существование преимущественно трех видов цветовых приемников, или цветоощущающих компонентов (рис. 35). Первый (протос) возбуждается сильнее всего длинными световыми волнами, слабее — средними и еще слабее — короткими. Второй (дейтерос) сильнее возбуждается средними, слабее — длинными и короткими световыми волнами. Третий (тритос) слабо возбуждается длинными, сильнее — средними и более всего — короткими волнами. Следовательно, свет любой длины волны возбуждает все три цветовых приемника, но в различной степени.


Рис. 35. Трехкомпонентность цветового зрения (схема); буквами обозначены цвета спектра.


Цветовое зрение в норме называют трихроматичным, ибо для получения более 13 000 различных тонов и оттенков нужны лишь 3 цвета. Имеются указания на четырехкомпонентную и полихроматическую природу цветового зрения.

Расстройства цветового зрения могут быть врожденные и приобретенные.

Врожденные расстройства цветового зрения носят характер дихромазии и зависят от ослабления или полного выпадения функции одного из трех компонентов (при выпадении компонента, воспринимающего красный цвет, — протанопия, зеленый — дейтеранопия и синий — тританопия).

Наиболее частая форма дихромазии — смешение красного и зеленого цветов. Впервые дихромазию описал Дальтон, и поэтому этот вид расстройства цветового зрения носит название дальтонизм. Врожденная тританопия (слепота на синий цвет) почти не встречается.

Понижение цветоощущения встречается у мужчин в 100 раз чаще, чем у женщин. Среди мальчиков школьного возраста расстройство цветового зрения обнаруживается примерно в 5%, а среди девочек — только в 0,5% случаев. Расстройства цветоощущения передаются по наследству.

Приобретенные расстройства цветового зрения характеризуются видением всех предметов в какомглибо одном цвете. Такая патология объясняется разными причинами. Так, эритропсия (видение всего в красном свете) возникает после ослепления глаз светом при расширенном зрачке. Цианопсия (видение в синем цвете) развивается после экстракции катаракты, когда в глаз попадает много коротковолновых лучей света вследствие удаления задерживающего их хрусталика.

Хлоропсия (видение в зеленом цвете) и ксантопсия (видение в желтом цвете) возникают вследствие окраски прозрачных сред глаза при желтухе, отравлении акрихином, сантонином, никотиновой кислотой и т. д. Нарушения цветового зрения возможны при воспалительной и дистрофической патологии собственно сосудистой оболочки и сетчатки. Особенность приобретенных нарушений цветовосприятия состоит прежде всего в том, что чувствительность глаза снижается в отношении всех основных цветов, так как эта чувствительность изменчива, лабильна.

Цветовое зрение исследуют чаще всего с помощью специальных полихроматических таблиц Рабкина (гласный метод).

Существуют и немые методы определения цветового зрения. Мальчикам лучше предлагать отбор одинаковой по тону мозаики, а девочкам — отбор ниток.

Применение таблиц особенно ценно в детской практике, когда многие субъективные исследования вследствие малого возраста пациентов невыполнимы. Цифры на таблицах доступны, а для самого младшего возраста можно ограничиться тем, что ребенок водит кисточкой ими указкой по цифре, которую он различает, но не знает, как ее назвать.

Необходимо помнить, что развитие цветоощущения задерживается, если новорожденного содержат в помещении с плохой освещенностью. Кроме того, становление цветового зрения обусловлено развитием условнорефлекторных связей. Следовательно, для правильного развития цветового зрения необходимо создать детям условия хорошей освещенности и с раннего возраста привлекать их внимание к ярким игрушкам, располагая эти игрушки на значительном расстоянии от глаз (50 см и более) и меняя их цвета. При выборе игрушек следует учитывать, что центральная ямка более всего чувствительна к желто-зеленой и оранжевой части спектра и мало чувствительна к синей. С усилением освещенности все цвета, кроме синего, сине-зеленого, желтого и пурпурно-малинового, в связи с изменением яркости воспринимаются как желто-белые цвета.

Детские гирлянды должны иметь в центре желтые, оранжевые, красные и зеленые шары, а шары с примесью синего, синие, белые, темные необходимо помещать по краям.

Цветоразличительная функция зрительного анализатора человека подвержена суточному биоритму с максимумом чувствительности к 13—15 ч в красном, желтом, зеленом и синем участках спектра.

Ковалевский Е.И.

Окружающий нас мир пестрит множеством красок, которые меняются с приходом нового времени года – бледные морозы с блёклым солнцем сменяются яркой зеленью весны, а на смену невообразимому многообразию различных летних цветов приходят все осенние оттенки жёлтого.

Мир вокруг нас прекрасен в этом ярком сменяющемся великолепии. Но что позволяет видеть зелёную листву, яркие цветы, пожелтевшие колосья и белоснежные снега?

Как глаз распознает цвета?

Оказывается, что сетчатка, являющаяся очень важной частью человеческого глазного яблока, сама состоит из палочек и колбочек. Как раз колбочки отвечают за восприятие различных цветов. В основе любого оттенка лежит три основных цвета – это красный, зелёный и синий.

Все остальные варианты – это лишь производные, которые образовались при смешении разного количества основных цветов. Интенсивность цвета зависит от длины волны, которая служит для его передачи.

Сетчатка глаза содержит 3 типа колбочек. Каждый из типов соответственно воспринимает длину волны от 400 до 700 нанометров и отвечает за восприятие какого-то одного из трёх основных цветов. Если по каким-то причинам функционирование колбочек нарушено, то восприятие человеком окружающего мира значительно изменится.

Цветоощущение

Говоря о цветовом зрении, невозможно не упомянуть такой термин как цветоощущение. Широко известно, что цветовые раздражители могут иметь различную яркость. Способность глаза воспринимать эту яркость и есть цветоощущение. Кроме того, к цветоощущению можно отнести искажения в восприятии цвета, вызванные дополнительными факторами, например, фоном.

Фон может непосредственно воздействовать на органы зрения, искажая оттенки изображения. Проверить это очень просто. Достаточно взять две фигуры одинакового цвета и поместить их на различные фоны. На чёрном фоне яркие оттенки будут иметь выразительные края, а по центру будут выглядеть более тускло. Жёлтый и синий фоны придают изображению разные оттенки восприятия.

Кроме того, различные цветоощущения будут проявлять себя в контрастных ситуациях. Так, например, если долгое время смотреть на зелёный цвет, а затем перевести взгляд на чистый лист бумаги, то покажется, что он имеет красноватый оттенок. Явление, при котором цвет оказывает подобное влияние на цветоощущение, называется цветовая утомляемость.

Нарушения цветового зрения

В зависимости от того, какой именно цвет не воспринимает человеческий глаз, существуют три различных изменения восприятия.

  1. Протаномалия. В этом случае нарушена работоспособность колбочек, отвечающих за восприятие красного цвета;
  2. Дейтераномалия. Это патологические изменения в восприятии зелёного цвета;
  3. И, наконец, тританомалия – неверное восприятие синего цвета.

Каждый из этих случаев может быть в трёх стадиях развития:

  1. Изменения в восприятии несущественны и немного искажают общую картину мира;
  2. Изменения достигают срединного этапа развития и сильно искажают получаемое глазом изображение;
  3. Сильные изменения цветовосприятия могут стать причиной полной его утраты.

Соответственно, заболевание, при котором человек нормально воспринимает только 2 основных цвета, называется дихромазией.

Иногда встречаются более сложные случаи, когда нарушена работа двух типов колбочек на сетчатке глаза. В этом случае человек может нормально воспринимать только одну цветовую гамму. Соответственное заболевание называется монохромазией.

Крайне редко можно наблюдать ахромазию – это полная потеря цветового восприятия. В этой ситуации человек видит мир в чёрно-белом цвете.

Стоит отметить, что для нормального цветовосприятия также существует своё название – это трихромазия.

Причины нарушений цветового зрения

Восприятие цвета может быть нарушено по нескольким причинам.

Во-первых, это наследственные нарушения. Встречается такое явление чаще всего у мужчин. Выражается пониженным цветоощущением, особенно в отношении к красному и зелёному цветам.

Это является ответом на вопрос, почему очень часто можно наблюдать ситуацию, при которой представительницы женского пола способны выделить намного больше оттенков в цветовой гамме, чем мужчины.

Многие люди привыкли называть дальтониками тех, кто не воспринимает оттенки красного. Под таким определением есть довольно прочные корни. Дело в том, что английский учёный Дальтон имел протаномалию – не воспринимал оттенки красного.

Он же впервые и описал это явление. Сегодня дальтоники – это те люди, которые имеют врождённый дефект цветового зрения. Они живут так же, как и остальные люди, и очень часто могут назвать цвета, которые не различают. Со временем к ним приходит умение распознавать различные степени яркости разных цветов.

Вторая причина возникновения нарушений в цветовосприятии – это приобретённое заболевание, ставшее следствием перенесённой болезни. Причинами такого нарушения могут стать заболевания сетчатки глаза, повреждения зрительного нерва, а также различные заболевания центральной нервной системы. Как правило, в этом случае присутствуют дополнительные симптомы, такие как резкое снижение остроты зрения, неприятные ощущения в области глаз и т.д.

Главное отличие приобретённого нарушения от врождённого в том, что его можно вылечить путём устранения основного заболевания. Лечение самого нарушения невозможно на данном этапе развития офтальмологии.

Исследование цветового зрения

В большинстве случаев таких исследований никто не проводит, однако есть частные ситуации, когда человека проверяют на наличие или отсутствие соответствующих нарушений.

В первую очередь, это, конечно, военные отдельных войск, для которых данный фактор важен.

Кроме них, могут проверяться люди, связанные с определёнными отраслями промышленности, а также все, кто проходит медицинский осмотр на получение водительских прав.

Проверка проводится с помощью специального тестирования в несколько этапов.

Первый этап – это демонстрация изображений, на которых цифры или геометрические фигуры изображены с помощью кругов разного цвета и размера.

Если у человека наблюдаются нарушения цветового зрения, то он просто не сможет увидеть различную яркость этих элементов, а, следовательно, и сами элементы.

Второй этап – это проверка с помощью аномалоскопа. Принцип действия прибора заключается в том, что человеку даётся два тестовых поля. На одном из них есть фон жёлтого цвета, а на другом испытуемый должен подобрать точно такой же фон с помощью красного и зелёного.

Этот прибор помогает не только распознать аномалии в цветовосприятии, но и определить степень развития этих аномалий.

Нормальное восприятие цвета – это явление, которое не изучено до конца. Оно до сих пор вызывает интерес множества учёных, тем более что на данный момент не существует способов вылечить аномалии при развитии соответствующих заболеваний.

Изменение в восприятии различных оттенков может служить признаком возникновения серьёзных заболеваний органов зрения, поэтому если вы наблюдаете у себя такой синдром, то не медлите с обращением к врачу-офтальмологу, ведь скорейшее излечение причины заболевания поможет вам вернуть нормальное восприятие окружающего мира.

Похожие публикации